Properties

Label 2898.95
Modulus $2898$
Conductor $1449$
Order $66$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2898, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,44,48]))
 
pari: [g,chi] = znchar(Mod(95,2898))
 

Basic properties

Modulus: \(2898\)
Conductor: \(1449\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1449}(95,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2898.db

\(\chi_{2898}(95,\cdot)\) \(\chi_{2898}(317,\cdot)\) \(\chi_{2898}(347,\cdot)\) \(\chi_{2898}(443,\cdot)\) \(\chi_{2898}(473,\cdot)\) \(\chi_{2898}(725,\cdot)\) \(\chi_{2898}(821,\cdot)\) \(\chi_{2898}(947,\cdot)\) \(\chi_{2898}(1199,\cdot)\) \(\chi_{2898}(1451,\cdot)\) \(\chi_{2898}(1481,\cdot)\) \(\chi_{2898}(1577,\cdot)\) \(\chi_{2898}(1733,\cdot)\) \(\chi_{2898}(1829,\cdot)\) \(\chi_{2898}(2111,\cdot)\) \(\chi_{2898}(2237,\cdot)\) \(\chi_{2898}(2585,\cdot)\) \(\chi_{2898}(2615,\cdot)\) \(\chi_{2898}(2741,\cdot)\) \(\chi_{2898}(2837,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((1289,829,1891)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{2}{3}\right),e\left(\frac{8}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 2898 }(95, a) \) \(-1\)\(1\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{1}{22}\right)\)\(e\left(\frac{28}{33}\right)\)\(e\left(\frac{17}{66}\right)\)\(e\left(\frac{8}{33}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{61}{66}\right)\)\(e\left(\frac{23}{33}\right)\)\(e\left(\frac{20}{33}\right)\)\(e\left(\frac{59}{66}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2898 }(95,a) \;\) at \(\;a = \) e.g. 2