Basic properties
Modulus: | \(3174\) | |
Conductor: | \(529\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(253\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{529}(259,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3174.m
\(\chi_{3174}(13,\cdot)\) \(\chi_{3174}(25,\cdot)\) \(\chi_{3174}(31,\cdot)\) \(\chi_{3174}(49,\cdot)\) \(\chi_{3174}(55,\cdot)\) \(\chi_{3174}(73,\cdot)\) \(\chi_{3174}(85,\cdot)\) \(\chi_{3174}(121,\cdot)\) \(\chi_{3174}(127,\cdot)\) \(\chi_{3174}(133,\cdot)\) \(\chi_{3174}(151,\cdot)\) \(\chi_{3174}(163,\cdot)\) \(\chi_{3174}(169,\cdot)\) \(\chi_{3174}(187,\cdot)\) \(\chi_{3174}(193,\cdot)\) \(\chi_{3174}(211,\cdot)\) \(\chi_{3174}(223,\cdot)\) \(\chi_{3174}(259,\cdot)\) \(\chi_{3174}(265,\cdot)\) \(\chi_{3174}(271,\cdot)\) \(\chi_{3174}(289,\cdot)\) \(\chi_{3174}(301,\cdot)\) \(\chi_{3174}(307,\cdot)\) \(\chi_{3174}(325,\cdot)\) \(\chi_{3174}(331,\cdot)\) \(\chi_{3174}(349,\cdot)\) \(\chi_{3174}(361,\cdot)\) \(\chi_{3174}(397,\cdot)\) \(\chi_{3174}(403,\cdot)\) \(\chi_{3174}(409,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{253})$ |
Fixed field: | Number field defined by a degree 253 polynomial (not computed) |
Values on generators
\((2117,1063)\) → \((1,e\left(\frac{251}{253}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 3174 }(259, a) \) | \(1\) | \(1\) | \(e\left(\frac{251}{253}\right)\) | \(e\left(\frac{248}{253}\right)\) | \(e\left(\frac{114}{253}\right)\) | \(e\left(\frac{126}{253}\right)\) | \(e\left(\frac{195}{253}\right)\) | \(e\left(\frac{14}{253}\right)\) | \(e\left(\frac{249}{253}\right)\) | \(e\left(\frac{206}{253}\right)\) | \(e\left(\frac{164}{253}\right)\) | \(e\left(\frac{246}{253}\right)\) |