sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3174, base_ring=CyclotomicField(506))
M = H._module
chi = DirichletCharacter(H, M([0,424]))
pari:[g,chi] = znchar(Mod(31,3174))
χ3174(13,⋅)
χ3174(25,⋅)
χ3174(31,⋅)
χ3174(49,⋅)
χ3174(55,⋅)
χ3174(73,⋅)
χ3174(85,⋅)
χ3174(121,⋅)
χ3174(127,⋅)
χ3174(133,⋅)
χ3174(151,⋅)
χ3174(163,⋅)
χ3174(169,⋅)
χ3174(187,⋅)
χ3174(193,⋅)
χ3174(211,⋅)
χ3174(223,⋅)
χ3174(259,⋅)
χ3174(265,⋅)
χ3174(271,⋅)
χ3174(289,⋅)
χ3174(301,⋅)
χ3174(307,⋅)
χ3174(325,⋅)
χ3174(331,⋅)
χ3174(349,⋅)
χ3174(361,⋅)
χ3174(397,⋅)
χ3174(403,⋅)
χ3174(409,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2117,1063) → (1,e(253212))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 25 | 29 | 31 | 35 |
χ3174(31,a) |
1 | 1 | e(253212) | e(25324) | e(25360) | e(25353) | e(25376) | e(25334) | e(253171) | e(253175) | e(25373) | e(253236) |
sage:chi.jacobi_sum(n)