Properties

Label 3174.31
Modulus $3174$
Conductor $529$
Order $253$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3174, base_ring=CyclotomicField(506))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,424]))
 
pari: [g,chi] = znchar(Mod(31,3174))
 

Basic properties

Modulus: \(3174\)
Conductor: \(529\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(253\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{529}(31,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3174.m

\(\chi_{3174}(13,\cdot)\) \(\chi_{3174}(25,\cdot)\) \(\chi_{3174}(31,\cdot)\) \(\chi_{3174}(49,\cdot)\) \(\chi_{3174}(55,\cdot)\) \(\chi_{3174}(73,\cdot)\) \(\chi_{3174}(85,\cdot)\) \(\chi_{3174}(121,\cdot)\) \(\chi_{3174}(127,\cdot)\) \(\chi_{3174}(133,\cdot)\) \(\chi_{3174}(151,\cdot)\) \(\chi_{3174}(163,\cdot)\) \(\chi_{3174}(169,\cdot)\) \(\chi_{3174}(187,\cdot)\) \(\chi_{3174}(193,\cdot)\) \(\chi_{3174}(211,\cdot)\) \(\chi_{3174}(223,\cdot)\) \(\chi_{3174}(259,\cdot)\) \(\chi_{3174}(265,\cdot)\) \(\chi_{3174}(271,\cdot)\) \(\chi_{3174}(289,\cdot)\) \(\chi_{3174}(301,\cdot)\) \(\chi_{3174}(307,\cdot)\) \(\chi_{3174}(325,\cdot)\) \(\chi_{3174}(331,\cdot)\) \(\chi_{3174}(349,\cdot)\) \(\chi_{3174}(361,\cdot)\) \(\chi_{3174}(397,\cdot)\) \(\chi_{3174}(403,\cdot)\) \(\chi_{3174}(409,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{253})$
Fixed field: Number field defined by a degree 253 polynomial (not computed)

Values on generators

\((2117,1063)\) → \((1,e\left(\frac{212}{253}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 3174 }(31, a) \) \(1\)\(1\)\(e\left(\frac{212}{253}\right)\)\(e\left(\frac{24}{253}\right)\)\(e\left(\frac{60}{253}\right)\)\(e\left(\frac{53}{253}\right)\)\(e\left(\frac{76}{253}\right)\)\(e\left(\frac{34}{253}\right)\)\(e\left(\frac{171}{253}\right)\)\(e\left(\frac{175}{253}\right)\)\(e\left(\frac{73}{253}\right)\)\(e\left(\frac{236}{253}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3174 }(31,a) \;\) at \(\;a = \) e.g. 2