Properties

Label 3174.31
Modulus 31743174
Conductor 529529
Order 253253
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3174, base_ring=CyclotomicField(506)) M = H._module chi = DirichletCharacter(H, M([0,424]))
 
Copy content pari:[g,chi] = znchar(Mod(31,3174))
 

Basic properties

Modulus: 31743174
Conductor: 529529
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 253253
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ529(31,)\chi_{529}(31,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3174.m

χ3174(13,)\chi_{3174}(13,\cdot) χ3174(25,)\chi_{3174}(25,\cdot) χ3174(31,)\chi_{3174}(31,\cdot) χ3174(49,)\chi_{3174}(49,\cdot) χ3174(55,)\chi_{3174}(55,\cdot) χ3174(73,)\chi_{3174}(73,\cdot) χ3174(85,)\chi_{3174}(85,\cdot) χ3174(121,)\chi_{3174}(121,\cdot) χ3174(127,)\chi_{3174}(127,\cdot) χ3174(133,)\chi_{3174}(133,\cdot) χ3174(151,)\chi_{3174}(151,\cdot) χ3174(163,)\chi_{3174}(163,\cdot) χ3174(169,)\chi_{3174}(169,\cdot) χ3174(187,)\chi_{3174}(187,\cdot) χ3174(193,)\chi_{3174}(193,\cdot) χ3174(211,)\chi_{3174}(211,\cdot) χ3174(223,)\chi_{3174}(223,\cdot) χ3174(259,)\chi_{3174}(259,\cdot) χ3174(265,)\chi_{3174}(265,\cdot) χ3174(271,)\chi_{3174}(271,\cdot) χ3174(289,)\chi_{3174}(289,\cdot) χ3174(301,)\chi_{3174}(301,\cdot) χ3174(307,)\chi_{3174}(307,\cdot) χ3174(325,)\chi_{3174}(325,\cdot) χ3174(331,)\chi_{3174}(331,\cdot) χ3174(349,)\chi_{3174}(349,\cdot) χ3174(361,)\chi_{3174}(361,\cdot) χ3174(397,)\chi_{3174}(397,\cdot) χ3174(403,)\chi_{3174}(403,\cdot) χ3174(409,)\chi_{3174}(409,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ253)\Q(\zeta_{253})
Fixed field: Number field defined by a degree 253 polynomial (not computed)

Values on generators

(2117,1063)(2117,1063)(1,e(212253))(1,e\left(\frac{212}{253}\right))

First values

aa 1-111557711111313171719192525292931313535
χ3174(31,a) \chi_{ 3174 }(31, a) 1111e(212253)e\left(\frac{212}{253}\right)e(24253)e\left(\frac{24}{253}\right)e(60253)e\left(\frac{60}{253}\right)e(53253)e\left(\frac{53}{253}\right)e(76253)e\left(\frac{76}{253}\right)e(34253)e\left(\frac{34}{253}\right)e(171253)e\left(\frac{171}{253}\right)e(175253)e\left(\frac{175}{253}\right)e(73253)e\left(\frac{73}{253}\right)e(236253)e\left(\frac{236}{253}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ3174(31,a)   \chi_{ 3174 }(31,a) \; at   a=\;a = e.g. 2