Properties

Label 319.171
Modulus 319319
Conductor 319319
Order 140140
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(140))
 
M = H._module
 
chi = DirichletCharacter(H, M([126,95]))
 
pari: [g,chi] = znchar(Mod(171,319))
 

Basic properties

Modulus: 319319
Conductor: 319319
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 140140
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 319.x

χ319(2,)\chi_{319}(2,\cdot) χ319(8,)\chi_{319}(8,\cdot) χ319(18,)\chi_{319}(18,\cdot) χ319(19,)\chi_{319}(19,\cdot) χ319(39,)\chi_{319}(39,\cdot) χ319(40,)\chi_{319}(40,\cdot) χ319(50,)\chi_{319}(50,\cdot) χ319(61,)\chi_{319}(61,\cdot) χ319(68,)\chi_{319}(68,\cdot) χ319(72,)\chi_{319}(72,\cdot) χ319(73,)\chi_{319}(73,\cdot) χ319(79,)\chi_{319}(79,\cdot) χ319(84,)\chi_{319}(84,\cdot) χ319(85,)\chi_{319}(85,\cdot) χ319(90,)\chi_{319}(90,\cdot) χ319(95,)\chi_{319}(95,\cdot) χ319(101,)\chi_{319}(101,\cdot) χ319(105,)\chi_{319}(105,\cdot) χ319(106,)\chi_{319}(106,\cdot) χ319(118,)\chi_{319}(118,\cdot) χ319(127,)\chi_{319}(127,\cdot) χ319(134,)\chi_{319}(134,\cdot) χ319(156,)\chi_{319}(156,\cdot) χ319(160,)\chi_{319}(160,\cdot) χ319(171,)\chi_{319}(171,\cdot) χ319(172,)\chi_{319}(172,\cdot) χ319(182,)\chi_{319}(182,\cdot) χ319(184,)\chi_{319}(184,\cdot) χ319(189,)\chi_{319}(189,\cdot) χ319(193,)\chi_{319}(193,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ140)\Q(\zeta_{140})
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

(233,89)(233,89)(e(910),e(1928))(e\left(\frac{9}{10}\right),e\left(\frac{19}{28}\right))

First values

aa 1-111223344556677889910101212
χ319(171,a) \chi_{ 319 }(171, a) 1111e(81140)e\left(\frac{81}{140}\right)e(83140)e\left(\frac{83}{140}\right)e(1170)e\left(\frac{11}{70}\right)e(3770)e\left(\frac{37}{70}\right)e(635)e\left(\frac{6}{35}\right)e(3170)e\left(\frac{31}{70}\right)e(103140)e\left(\frac{103}{140}\right)e(1370)e\left(\frac{13}{70}\right)e(328)e\left(\frac{3}{28}\right)i-i
sage: chi.jacobi_sum(n)
 
χ319(171,a)   \chi_{ 319 }(171,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ319(171,))   \tau_{ a }( \chi_{ 319 }(171,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ319(171,),χ319(n,))   J(\chi_{ 319 }(171,·),\chi_{ 319 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ319(171,))  K(a,b,\chi_{ 319 }(171,·)) \; at   a,b=\; a,b = e.g. 1,2