from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(319, base_ring=CyclotomicField(140))
M = H._module
chi = DirichletCharacter(H, M([126,95]))
pari: [g,chi] = znchar(Mod(171,319))
χ319(2,⋅)
χ319(8,⋅)
χ319(18,⋅)
χ319(19,⋅)
χ319(39,⋅)
χ319(40,⋅)
χ319(50,⋅)
χ319(61,⋅)
χ319(68,⋅)
χ319(72,⋅)
χ319(73,⋅)
χ319(79,⋅)
χ319(84,⋅)
χ319(85,⋅)
χ319(90,⋅)
χ319(95,⋅)
χ319(101,⋅)
χ319(105,⋅)
χ319(106,⋅)
χ319(118,⋅)
χ319(127,⋅)
χ319(134,⋅)
χ319(156,⋅)
χ319(160,⋅)
χ319(171,⋅)
χ319(172,⋅)
χ319(182,⋅)
χ319(184,⋅)
χ319(189,⋅)
χ319(193,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(233,89) → (e(109),e(2819))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ319(171,a) |
1 | 1 | e(14081) | e(14083) | e(7011) | e(7037) | e(356) | e(7031) | e(140103) | e(7013) | e(283) | −i |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)