Properties

Label 319.172
Modulus $319$
Conductor $319$
Order $140$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(140))
 
M = H._module
 
chi = DirichletCharacter(H, M([98,75]))
 
pari: [g,chi] = znchar(Mod(172,319))
 

Basic properties

Modulus: \(319\)
Conductor: \(319\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(140\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 319.x

\(\chi_{319}(2,\cdot)\) \(\chi_{319}(8,\cdot)\) \(\chi_{319}(18,\cdot)\) \(\chi_{319}(19,\cdot)\) \(\chi_{319}(39,\cdot)\) \(\chi_{319}(40,\cdot)\) \(\chi_{319}(50,\cdot)\) \(\chi_{319}(61,\cdot)\) \(\chi_{319}(68,\cdot)\) \(\chi_{319}(72,\cdot)\) \(\chi_{319}(73,\cdot)\) \(\chi_{319}(79,\cdot)\) \(\chi_{319}(84,\cdot)\) \(\chi_{319}(85,\cdot)\) \(\chi_{319}(90,\cdot)\) \(\chi_{319}(95,\cdot)\) \(\chi_{319}(101,\cdot)\) \(\chi_{319}(105,\cdot)\) \(\chi_{319}(106,\cdot)\) \(\chi_{319}(118,\cdot)\) \(\chi_{319}(127,\cdot)\) \(\chi_{319}(134,\cdot)\) \(\chi_{319}(156,\cdot)\) \(\chi_{319}(160,\cdot)\) \(\chi_{319}(171,\cdot)\) \(\chi_{319}(172,\cdot)\) \(\chi_{319}(182,\cdot)\) \(\chi_{319}(184,\cdot)\) \(\chi_{319}(189,\cdot)\) \(\chi_{319}(193,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{140})$
Fixed field: Number field defined by a degree 140 polynomial (not computed)

Values on generators

\((233,89)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{15}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 319 }(172, a) \) \(1\)\(1\)\(e\left(\frac{33}{140}\right)\)\(e\left(\frac{39}{140}\right)\)\(e\left(\frac{33}{70}\right)\)\(e\left(\frac{41}{70}\right)\)\(e\left(\frac{18}{35}\right)\)\(e\left(\frac{23}{70}\right)\)\(e\left(\frac{99}{140}\right)\)\(e\left(\frac{39}{70}\right)\)\(e\left(\frac{23}{28}\right)\)\(-i\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 319 }(172,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 319 }(172,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 319 }(172,·),\chi_{ 319 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 319 }(172,·)) \;\) at \(\; a,b = \) e.g. 1,2