Properties

Label 319.226
Modulus 319319
Conductor 319319
Order 7070
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,50]))
 
pari: [g,chi] = znchar(Mod(226,319))
 

Basic properties

Modulus: 319319
Conductor: 319319
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 7070
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 319.u

χ319(7,)\chi_{319}(7,\cdot) χ319(24,)\chi_{319}(24,\cdot) χ319(52,)\chi_{319}(52,\cdot) χ319(74,)\chi_{319}(74,\cdot) χ319(83,)\chi_{319}(83,\cdot) χ319(94,)\chi_{319}(94,\cdot) χ319(107,)\chi_{319}(107,\cdot) χ319(112,)\chi_{319}(112,\cdot) χ319(123,)\chi_{319}(123,\cdot) χ319(139,)\chi_{319}(139,\cdot) χ319(140,)\chi_{319}(140,\cdot) χ319(161,)\chi_{319}(161,\cdot) χ319(194,)\chi_{319}(194,\cdot) χ319(226,)\chi_{319}(226,\cdot) χ319(227,)\chi_{319}(227,\cdot) χ319(228,)\chi_{319}(228,\cdot) χ319(239,)\chi_{319}(239,\cdot) χ319(248,)\chi_{319}(248,\cdot) χ319(255,)\chi_{319}(255,\cdot) χ319(277,)\chi_{319}(277,\cdot) χ319(281,)\chi_{319}(281,\cdot) χ319(310,)\chi_{319}(310,\cdot) χ319(314,)\chi_{319}(314,\cdot) χ319(315,)\chi_{319}(315,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ35)\Q(\zeta_{35})
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

(233,89)(233,89)(e(910),e(57))(e\left(\frac{9}{10}\right),e\left(\frac{5}{7}\right))

First values

aa 1-111223344556677889910101212
χ319(226,a) \chi_{ 319 }(226, a) 1-111e(4370)e\left(\frac{43}{70}\right)e(2735)e\left(\frac{27}{35}\right)e(835)e\left(\frac{8}{35}\right)e(1135)e\left(\frac{11}{35}\right)e(2770)e\left(\frac{27}{70}\right)e(6170)e\left(\frac{61}{70}\right)e(5970)e\left(\frac{59}{70}\right)e(1935)e\left(\frac{19}{35}\right)e(1314)e\left(\frac{13}{14}\right)11
sage: chi.jacobi_sum(n)
 
χ319(226,a)   \chi_{ 319 }(226,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ319(226,))   \tau_{ a }( \chi_{ 319 }(226,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ319(226,),χ319(n,))   J(\chi_{ 319 }(226,·),\chi_{ 319 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ319(226,))  K(a,b,\chi_{ 319 }(226,·)) \; at   a,b=\; a,b = e.g. 1,2