Properties

Label 319.228
Modulus $319$
Conductor $319$
Order $70$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,40]))
 
pari: [g,chi] = znchar(Mod(228,319))
 

Basic properties

Modulus: \(319\)
Conductor: \(319\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 319.u

\(\chi_{319}(7,\cdot)\) \(\chi_{319}(24,\cdot)\) \(\chi_{319}(52,\cdot)\) \(\chi_{319}(74,\cdot)\) \(\chi_{319}(83,\cdot)\) \(\chi_{319}(94,\cdot)\) \(\chi_{319}(107,\cdot)\) \(\chi_{319}(112,\cdot)\) \(\chi_{319}(123,\cdot)\) \(\chi_{319}(139,\cdot)\) \(\chi_{319}(140,\cdot)\) \(\chi_{319}(161,\cdot)\) \(\chi_{319}(194,\cdot)\) \(\chi_{319}(226,\cdot)\) \(\chi_{319}(227,\cdot)\) \(\chi_{319}(228,\cdot)\) \(\chi_{319}(239,\cdot)\) \(\chi_{319}(248,\cdot)\) \(\chi_{319}(255,\cdot)\) \(\chi_{319}(277,\cdot)\) \(\chi_{319}(281,\cdot)\) \(\chi_{319}(310,\cdot)\) \(\chi_{319}(314,\cdot)\) \(\chi_{319}(315,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

\((233,89)\) → \((e\left(\frac{3}{10}\right),e\left(\frac{4}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 319 }(228, a) \) \(-1\)\(1\)\(e\left(\frac{61}{70}\right)\)\(e\left(\frac{9}{35}\right)\)\(e\left(\frac{26}{35}\right)\)\(e\left(\frac{27}{35}\right)\)\(e\left(\frac{9}{70}\right)\)\(e\left(\frac{67}{70}\right)\)\(e\left(\frac{43}{70}\right)\)\(e\left(\frac{18}{35}\right)\)\(e\left(\frac{9}{14}\right)\)\(1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 319 }(228,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 319 }(228,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 319 }(228,·),\chi_{ 319 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 319 }(228,·)) \;\) at \(\; a,b = \) e.g. 1,2