Properties

Label 319.35
Modulus $319$
Conductor $319$
Order $70$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,15]))
 
pari: [g,chi] = znchar(Mod(35,319))
 

Basic properties

Modulus: \(319\)
Conductor: \(319\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 319.v

\(\chi_{319}(6,\cdot)\) \(\chi_{319}(13,\cdot)\) \(\chi_{319}(35,\cdot)\) \(\chi_{319}(51,\cdot)\) \(\chi_{319}(62,\cdot)\) \(\chi_{319}(63,\cdot)\) \(\chi_{319}(96,\cdot)\) \(\chi_{319}(129,\cdot)\) \(\chi_{319}(138,\cdot)\) \(\chi_{319}(149,\cdot)\) \(\chi_{319}(150,\cdot)\) \(\chi_{319}(151,\cdot)\) \(\chi_{319}(167,\cdot)\) \(\chi_{319}(178,\cdot)\) \(\chi_{319}(183,\cdot)\) \(\chi_{319}(216,\cdot)\) \(\chi_{319}(237,\cdot)\) \(\chi_{319}(238,\cdot)\) \(\chi_{319}(266,\cdot)\) \(\chi_{319}(270,\cdot)\) \(\chi_{319}(283,\cdot)\) \(\chi_{319}(294,\cdot)\) \(\chi_{319}(299,\cdot)\) \(\chi_{319}(303,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

\((233,89)\) → \((e\left(\frac{1}{10}\right),e\left(\frac{3}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 319 }(35, a) \) \(-1\)\(1\)\(e\left(\frac{11}{35}\right)\)\(e\left(\frac{61}{70}\right)\)\(e\left(\frac{22}{35}\right)\)\(e\left(\frac{4}{35}\right)\)\(e\left(\frac{13}{70}\right)\)\(e\left(\frac{19}{70}\right)\)\(e\left(\frac{33}{35}\right)\)\(e\left(\frac{26}{35}\right)\)\(e\left(\frac{3}{7}\right)\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 319 }(35,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 319 }(35,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 319 }(35,·),\chi_{ 319 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 319 }(35,·)) \;\) at \(\; a,b = \) e.g. 1,2