Properties

Label 319.35
Modulus 319319
Conductor 319319
Order 7070
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,15]))
 
pari: [g,chi] = znchar(Mod(35,319))
 

Basic properties

Modulus: 319319
Conductor: 319319
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 7070
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 319.v

χ319(6,)\chi_{319}(6,\cdot) χ319(13,)\chi_{319}(13,\cdot) χ319(35,)\chi_{319}(35,\cdot) χ319(51,)\chi_{319}(51,\cdot) χ319(62,)\chi_{319}(62,\cdot) χ319(63,)\chi_{319}(63,\cdot) χ319(96,)\chi_{319}(96,\cdot) χ319(129,)\chi_{319}(129,\cdot) χ319(138,)\chi_{319}(138,\cdot) χ319(149,)\chi_{319}(149,\cdot) χ319(150,)\chi_{319}(150,\cdot) χ319(151,)\chi_{319}(151,\cdot) χ319(167,)\chi_{319}(167,\cdot) χ319(178,)\chi_{319}(178,\cdot) χ319(183,)\chi_{319}(183,\cdot) χ319(216,)\chi_{319}(216,\cdot) χ319(237,)\chi_{319}(237,\cdot) χ319(238,)\chi_{319}(238,\cdot) χ319(266,)\chi_{319}(266,\cdot) χ319(270,)\chi_{319}(270,\cdot) χ319(283,)\chi_{319}(283,\cdot) χ319(294,)\chi_{319}(294,\cdot) χ319(299,)\chi_{319}(299,\cdot) χ319(303,)\chi_{319}(303,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ35)\Q(\zeta_{35})
Fixed field: Number field defined by a degree 70 polynomial

Values on generators

(233,89)(233,89)(e(110),e(314))(e\left(\frac{1}{10}\right),e\left(\frac{3}{14}\right))

First values

aa 1-111223344556677889910101212
χ319(35,a) \chi_{ 319 }(35, a) 1-111e(1135)e\left(\frac{11}{35}\right)e(6170)e\left(\frac{61}{70}\right)e(2235)e\left(\frac{22}{35}\right)e(435)e\left(\frac{4}{35}\right)e(1370)e\left(\frac{13}{70}\right)e(1970)e\left(\frac{19}{70}\right)e(3335)e\left(\frac{33}{35}\right)e(2635)e\left(\frac{26}{35}\right)e(37)e\left(\frac{3}{7}\right)1-1
sage: chi.jacobi_sum(n)
 
χ319(35,a)   \chi_{ 319 }(35,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ319(35,))   \tau_{ a }( \chi_{ 319 }(35,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ319(35,),χ319(n,))   J(\chi_{ 319 }(35,·),\chi_{ 319 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ319(35,))  K(a,b,\chi_{ 319 }(35,·)) \; at   a,b=\; a,b = e.g. 1,2