sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(319, base_ring=CyclotomicField(70))
M = H._module
chi = DirichletCharacter(H, M([7,15]))
pari:[g,chi] = znchar(Mod(35,319))
Modulus: | 319 | |
Conductor: | 319 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 70 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ319(6,⋅)
χ319(13,⋅)
χ319(35,⋅)
χ319(51,⋅)
χ319(62,⋅)
χ319(63,⋅)
χ319(96,⋅)
χ319(129,⋅)
χ319(138,⋅)
χ319(149,⋅)
χ319(150,⋅)
χ319(151,⋅)
χ319(167,⋅)
χ319(178,⋅)
χ319(183,⋅)
χ319(216,⋅)
χ319(237,⋅)
χ319(238,⋅)
χ319(266,⋅)
χ319(270,⋅)
χ319(283,⋅)
χ319(294,⋅)
χ319(299,⋅)
χ319(303,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(233,89) → (e(101),e(143))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ319(35,a) |
−1 | 1 | e(3511) | e(7061) | e(3522) | e(354) | e(7013) | e(7019) | e(3533) | e(3526) | e(73) | −1 |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)