Properties

Label 319.v
Modulus $319$
Conductor $319$
Order $70$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,15]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(6,319))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(319\)
Conductor: \(319\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(70\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{35})$
Fixed field: Number field defined by a degree 70 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{319}(6,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\)
\(\chi_{319}(13,\cdot)\) \(-1\) \(1\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\)
\(\chi_{319}(35,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\)
\(\chi_{319}(51,\cdot)\) \(-1\) \(1\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\)
\(\chi_{319}(62,\cdot)\) \(-1\) \(1\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\)
\(\chi_{319}(63,\cdot)\) \(-1\) \(1\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\)
\(\chi_{319}(96,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\)
\(\chi_{319}(129,\cdot)\) \(-1\) \(1\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\)
\(\chi_{319}(138,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\)
\(\chi_{319}(149,\cdot)\) \(-1\) \(1\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\)
\(\chi_{319}(150,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\)
\(\chi_{319}(151,\cdot)\) \(-1\) \(1\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\)
\(\chi_{319}(167,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\)
\(\chi_{319}(178,\cdot)\) \(-1\) \(1\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\)
\(\chi_{319}(183,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{13}{70}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\)
\(\chi_{319}(216,\cdot)\) \(-1\) \(1\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\)
\(\chi_{319}(237,\cdot)\) \(-1\) \(1\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\)
\(\chi_{319}(238,\cdot)\) \(-1\) \(1\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{33}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{3}{7}\right)\) \(-1\)
\(\chi_{319}(266,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{4}{7}\right)\) \(-1\)
\(\chi_{319}(270,\cdot)\) \(-1\) \(1\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\)
\(\chi_{319}(283,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{6}{7}\right)\) \(-1\)
\(\chi_{319}(294,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{1}{7}\right)\) \(-1\)
\(\chi_{319}(299,\cdot)\) \(-1\) \(1\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{41}{70}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{5}{7}\right)\) \(-1\)
\(\chi_{319}(303,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{1}{70}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{2}{7}\right)\) \(-1\)