Properties

Label 319.v
Modulus 319319
Conductor 319319
Order 7070
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(319, base_ring=CyclotomicField(70))
 
M = H._module
 
chi = DirichletCharacter(H, M([63,15]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(6,319))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 319319
Conductor: 319319
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 7070
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ35)\Q(\zeta_{35})
Fixed field: Number field defined by a degree 70 polynomial

Characters in Galois orbit

Character 1-1 11 22 33 44 55 66 77 88 99 1010 1212
χ319(6,)\chi_{319}(6,\cdot) 1-1 11 e(435)e\left(\frac{4}{35}\right) e(1970)e\left(\frac{19}{70}\right) e(835)e\left(\frac{8}{35}\right) e(1135)e\left(\frac{11}{35}\right) e(2770)e\left(\frac{27}{70}\right) e(6170)e\left(\frac{61}{70}\right) e(1235)e\left(\frac{12}{35}\right) e(1935)e\left(\frac{19}{35}\right) e(37)e\left(\frac{3}{7}\right) 1-1
χ319(13,)\chi_{319}(13,\cdot) 1-1 11 e(2635)e\left(\frac{26}{35}\right) e(170)e\left(\frac{1}{70}\right) e(1735)e\left(\frac{17}{35}\right) e(1935)e\left(\frac{19}{35}\right) e(5370)e\left(\frac{53}{70}\right) e(2970)e\left(\frac{29}{70}\right) e(835)e\left(\frac{8}{35}\right) e(135)e\left(\frac{1}{35}\right) e(27)e\left(\frac{2}{7}\right) 1-1
χ319(35,)\chi_{319}(35,\cdot) 1-1 11 e(1135)e\left(\frac{11}{35}\right) e(6170)e\left(\frac{61}{70}\right) e(2235)e\left(\frac{22}{35}\right) e(435)e\left(\frac{4}{35}\right) e(1370)e\left(\frac{13}{70}\right) e(1970)e\left(\frac{19}{70}\right) e(3335)e\left(\frac{33}{35}\right) e(2635)e\left(\frac{26}{35}\right) e(37)e\left(\frac{3}{7}\right) 1-1
χ319(51,)\chi_{319}(51,\cdot) 1-1 11 e(2235)e\left(\frac{22}{35}\right) e(1770)e\left(\frac{17}{70}\right) e(935)e\left(\frac{9}{35}\right) e(835)e\left(\frac{8}{35}\right) e(6170)e\left(\frac{61}{70}\right) e(370)e\left(\frac{3}{70}\right) e(3135)e\left(\frac{31}{35}\right) e(1735)e\left(\frac{17}{35}\right) e(67)e\left(\frac{6}{7}\right) 1-1
χ319(62,)\chi_{319}(62,\cdot) 1-1 11 e(2735)e\left(\frac{27}{35}\right) e(6770)e\left(\frac{67}{70}\right) e(1935)e\left(\frac{19}{35}\right) e(1335)e\left(\frac{13}{35}\right) e(5170)e\left(\frac{51}{70}\right) e(5370)e\left(\frac{53}{70}\right) e(1135)e\left(\frac{11}{35}\right) e(3235)e\left(\frac{32}{35}\right) e(17)e\left(\frac{1}{7}\right) 1-1
χ319(63,)\chi_{319}(63,\cdot) 1-1 11 e(335)e\left(\frac{3}{35}\right) e(2370)e\left(\frac{23}{70}\right) e(635)e\left(\frac{6}{35}\right) e(1735)e\left(\frac{17}{35}\right) e(2970)e\left(\frac{29}{70}\right) e(3770)e\left(\frac{37}{70}\right) e(935)e\left(\frac{9}{35}\right) e(2335)e\left(\frac{23}{35}\right) e(47)e\left(\frac{4}{7}\right) 1-1
χ319(96,)\chi_{319}(96,\cdot) 1-1 11 e(2335)e\left(\frac{23}{35}\right) e(1370)e\left(\frac{13}{70}\right) e(1135)e\left(\frac{11}{35}\right) e(235)e\left(\frac{2}{35}\right) e(5970)e\left(\frac{59}{70}\right) e(2770)e\left(\frac{27}{70}\right) e(3435)e\left(\frac{34}{35}\right) e(1335)e\left(\frac{13}{35}\right) e(57)e\left(\frac{5}{7}\right) 1-1
χ319(129,)\chi_{319}(129,\cdot) 1-1 11 e(3335)e\left(\frac{33}{35}\right) e(4370)e\left(\frac{43}{70}\right) e(3135)e\left(\frac{31}{35}\right) e(1235)e\left(\frac{12}{35}\right) e(3970)e\left(\frac{39}{70}\right) e(5770)e\left(\frac{57}{70}\right) e(2935)e\left(\frac{29}{35}\right) e(835)e\left(\frac{8}{35}\right) e(27)e\left(\frac{2}{7}\right) 1-1
χ319(138,)\chi_{319}(138,\cdot) 1-1 11 e(2935)e\left(\frac{29}{35}\right) e(5970)e\left(\frac{59}{70}\right) e(2335)e\left(\frac{23}{35}\right) e(135)e\left(\frac{1}{35}\right) e(4770)e\left(\frac{47}{70}\right) e(3170)e\left(\frac{31}{70}\right) e(1735)e\left(\frac{17}{35}\right) e(2435)e\left(\frac{24}{35}\right) e(67)e\left(\frac{6}{7}\right) 1-1
χ319(149,)\chi_{319}(149,\cdot) 1-1 11 e(3435)e\left(\frac{34}{35}\right) e(3970)e\left(\frac{39}{70}\right) e(3335)e\left(\frac{33}{35}\right) e(635)e\left(\frac{6}{35}\right) e(3770)e\left(\frac{37}{70}\right) e(1170)e\left(\frac{11}{70}\right) e(3235)e\left(\frac{32}{35}\right) e(435)e\left(\frac{4}{35}\right) e(17)e\left(\frac{1}{7}\right) 1-1
χ319(150,)\chi_{319}(150,\cdot) 1-1 11 e(1735)e\left(\frac{17}{35}\right) e(3770)e\left(\frac{37}{70}\right) e(3435)e\left(\frac{34}{35}\right) e(335)e\left(\frac{3}{35}\right) e(170)e\left(\frac{1}{70}\right) e(2370)e\left(\frac{23}{70}\right) e(1635)e\left(\frac{16}{35}\right) e(235)e\left(\frac{2}{35}\right) e(47)e\left(\frac{4}{7}\right) 1-1
χ319(151,)\chi_{319}(151,\cdot) 1-1 11 e(1835)e\left(\frac{18}{35}\right) e(3370)e\left(\frac{33}{70}\right) e(135)e\left(\frac{1}{35}\right) e(3235)e\left(\frac{32}{35}\right) e(6970)e\left(\frac{69}{70}\right) e(4770)e\left(\frac{47}{70}\right) e(1935)e\left(\frac{19}{35}\right) e(3335)e\left(\frac{33}{35}\right) e(37)e\left(\frac{3}{7}\right) 1-1
χ319(167,)\chi_{319}(167,\cdot) 1-1 11 e(135)e\left(\frac{1}{35}\right) e(3170)e\left(\frac{31}{70}\right) e(235)e\left(\frac{2}{35}\right) e(2935)e\left(\frac{29}{35}\right) e(3370)e\left(\frac{33}{70}\right) e(5970)e\left(\frac{59}{70}\right) e(335)e\left(\frac{3}{35}\right) e(3135)e\left(\frac{31}{35}\right) e(67)e\left(\frac{6}{7}\right) 1-1
χ319(178,)\chi_{319}(178,\cdot) 1-1 11 e(635)e\left(\frac{6}{35}\right) e(1170)e\left(\frac{11}{70}\right) e(1235)e\left(\frac{12}{35}\right) e(3435)e\left(\frac{34}{35}\right) e(2370)e\left(\frac{23}{70}\right) e(3970)e\left(\frac{39}{70}\right) e(1835)e\left(\frac{18}{35}\right) e(1135)e\left(\frac{11}{35}\right) e(17)e\left(\frac{1}{7}\right) 1-1
χ319(183,)\chi_{319}(183,\cdot) 1-1 11 e(235)e\left(\frac{2}{35}\right) e(2770)e\left(\frac{27}{70}\right) e(435)e\left(\frac{4}{35}\right) e(2335)e\left(\frac{23}{35}\right) e(3170)e\left(\frac{31}{70}\right) e(1370)e\left(\frac{13}{70}\right) e(635)e\left(\frac{6}{35}\right) e(2735)e\left(\frac{27}{35}\right) e(57)e\left(\frac{5}{7}\right) 1-1
χ319(216,)\chi_{319}(216,\cdot) 1-1 11 e(1235)e\left(\frac{12}{35}\right) e(5770)e\left(\frac{57}{70}\right) e(2435)e\left(\frac{24}{35}\right) e(3335)e\left(\frac{33}{35}\right) e(1170)e\left(\frac{11}{70}\right) e(4370)e\left(\frac{43}{70}\right) e(135)e\left(\frac{1}{35}\right) e(2235)e\left(\frac{22}{35}\right) e(27)e\left(\frac{2}{7}\right) 1-1
χ319(237,)\chi_{319}(237,\cdot) 1-1 11 e(2435)e\left(\frac{24}{35}\right) e(970)e\left(\frac{9}{70}\right) e(1335)e\left(\frac{13}{35}\right) e(3135)e\left(\frac{31}{35}\right) e(5770)e\left(\frac{57}{70}\right) e(5170)e\left(\frac{51}{70}\right) e(235)e\left(\frac{2}{35}\right) e(935)e\left(\frac{9}{35}\right) e(47)e\left(\frac{4}{7}\right) 1-1
χ319(238,)\chi_{319}(238,\cdot) 1-1 11 e(3235)e\left(\frac{32}{35}\right) e(4770)e\left(\frac{47}{70}\right) e(2935)e\left(\frac{29}{35}\right) e(1835)e\left(\frac{18}{35}\right) e(4170)e\left(\frac{41}{70}\right) e(3370)e\left(\frac{33}{70}\right) e(2635)e\left(\frac{26}{35}\right) e(1235)e\left(\frac{12}{35}\right) e(37)e\left(\frac{3}{7}\right) 1-1
χ319(266,)\chi_{319}(266,\cdot) 1-1 11 e(3135)e\left(\frac{31}{35}\right) e(5170)e\left(\frac{51}{70}\right) e(2735)e\left(\frac{27}{35}\right) e(2435)e\left(\frac{24}{35}\right) e(4370)e\left(\frac{43}{70}\right) e(970)e\left(\frac{9}{70}\right) e(2335)e\left(\frac{23}{35}\right) e(1635)e\left(\frac{16}{35}\right) e(47)e\left(\frac{4}{7}\right) 1-1
χ319(270,)\chi_{319}(270,\cdot) 1-1 11 e(935)e\left(\frac{9}{35}\right) e(6970)e\left(\frac{69}{70}\right) e(1835)e\left(\frac{18}{35}\right) e(1635)e\left(\frac{16}{35}\right) e(1770)e\left(\frac{17}{70}\right) e(4170)e\left(\frac{41}{70}\right) e(2735)e\left(\frac{27}{35}\right) e(3435)e\left(\frac{34}{35}\right) e(57)e\left(\frac{5}{7}\right) 1-1
χ319(283,)\chi_{319}(283,\cdot) 1-1 11 e(835)e\left(\frac{8}{35}\right) e(370)e\left(\frac{3}{70}\right) e(1635)e\left(\frac{16}{35}\right) e(2235)e\left(\frac{22}{35}\right) e(1970)e\left(\frac{19}{70}\right) e(1770)e\left(\frac{17}{70}\right) e(2435)e\left(\frac{24}{35}\right) e(335)e\left(\frac{3}{35}\right) e(67)e\left(\frac{6}{7}\right) 1-1
χ319(294,)\chi_{319}(294,\cdot) 1-1 11 e(1335)e\left(\frac{13}{35}\right) e(5370)e\left(\frac{53}{70}\right) e(2635)e\left(\frac{26}{35}\right) e(2735)e\left(\frac{27}{35}\right) e(970)e\left(\frac{9}{70}\right) e(6770)e\left(\frac{67}{70}\right) e(435)e\left(\frac{4}{35}\right) e(1835)e\left(\frac{18}{35}\right) e(17)e\left(\frac{1}{7}\right) 1-1
χ319(299,)\chi_{319}(299,\cdot) 1-1 11 e(1635)e\left(\frac{16}{35}\right) e(4170)e\left(\frac{41}{70}\right) e(3235)e\left(\frac{32}{35}\right) e(935)e\left(\frac{9}{35}\right) e(370)e\left(\frac{3}{70}\right) e(6970)e\left(\frac{69}{70}\right) e(1335)e\left(\frac{13}{35}\right) e(635)e\left(\frac{6}{35}\right) e(57)e\left(\frac{5}{7}\right) 1-1
χ319(303,)\chi_{319}(303,\cdot) 1-1 11 e(1935)e\left(\frac{19}{35}\right) e(2970)e\left(\frac{29}{70}\right) e(335)e\left(\frac{3}{35}\right) e(2635)e\left(\frac{26}{35}\right) e(6770)e\left(\frac{67}{70}\right) e(170)e\left(\frac{1}{70}\right) e(2235)e\left(\frac{22}{35}\right) e(2935)e\left(\frac{29}{35}\right) e(27)e\left(\frac{2}{7}\right) 1-1