Properties

Label 350.173
Modulus $350$
Conductor $175$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(350, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([33,50]))
 
pari: [g,chi] = znchar(Mod(173,350))
 

Basic properties

Modulus: \(350\)
Conductor: \(175\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{175}(173,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 350.x

\(\chi_{350}(3,\cdot)\) \(\chi_{350}(17,\cdot)\) \(\chi_{350}(33,\cdot)\) \(\chi_{350}(47,\cdot)\) \(\chi_{350}(73,\cdot)\) \(\chi_{350}(87,\cdot)\) \(\chi_{350}(103,\cdot)\) \(\chi_{350}(117,\cdot)\) \(\chi_{350}(173,\cdot)\) \(\chi_{350}(187,\cdot)\) \(\chi_{350}(213,\cdot)\) \(\chi_{350}(227,\cdot)\) \(\chi_{350}(283,\cdot)\) \(\chi_{350}(297,\cdot)\) \(\chi_{350}(313,\cdot)\) \(\chi_{350}(327,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((127,101)\) → \((e\left(\frac{11}{20}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 350 }(173, a) \) \(1\)\(1\)\(e\left(\frac{41}{60}\right)\)\(e\left(\frac{11}{30}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{59}{60}\right)\)\(e\left(\frac{1}{15}\right)\)\(e\left(\frac{43}{60}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{7}{30}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 350 }(173,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 350 }(173,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 350 }(173,·),\chi_{ 350 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 350 }(173,·)) \;\) at \(\; a,b = \) e.g. 1,2