sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(350, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([51,50]))
pari:[g,chi] = znchar(Mod(47,350))
χ350(3,⋅)
χ350(17,⋅)
χ350(33,⋅)
χ350(47,⋅)
χ350(73,⋅)
χ350(87,⋅)
χ350(103,⋅)
χ350(117,⋅)
χ350(173,⋅)
χ350(187,⋅)
χ350(213,⋅)
χ350(227,⋅)
χ350(283,⋅)
χ350(297,⋅)
χ350(313,⋅)
χ350(327,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(127,101) → (e(2017),e(65))
a |
−1 | 1 | 3 | 9 | 11 | 13 | 17 | 19 | 23 | 27 | 29 | 31 |
χ350(47,a) |
1 | 1 | e(6047) | e(3017) | e(1514) | e(2013) | e(6053) | e(157) | e(601) | e(207) | e(107) | e(3019) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)