from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3549, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,2,9]))
pari: [g,chi] = znchar(Mod(1760,3549))
Basic properties
Modulus: | \(3549\) | |
Conductor: | \(273\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(12\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{273}(122,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3549.cb
\(\chi_{3549}(437,\cdot)\) \(\chi_{3549}(1760,\cdot)\) \(\chi_{3549}(1958,\cdot)\) \(\chi_{3549}(3281,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{12})\) |
Fixed field: | 12.0.2183725770062310261333.1 |
Values on generators
\((1184,1522,3382)\) → \((-1,e\left(\frac{1}{6}\right),-i)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(16\) | \(17\) | \(19\) | \(20\) |
\( \chi_{ 3549 }(1760, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(i\) |
sage: chi.jacobi_sum(n)