Properties

Label 3549.1760
Modulus 35493549
Conductor 273273
Order 1212
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3549, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,2,9]))
 
pari: [g,chi] = znchar(Mod(1760,3549))
 

Basic properties

Modulus: 35493549
Conductor: 273273
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ273(122,)\chi_{273}(122,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3549.cb

χ3549(437,)\chi_{3549}(437,\cdot) χ3549(1760,)\chi_{3549}(1760,\cdot) χ3549(1958,)\chi_{3549}(1958,\cdot) χ3549(3281,)\chi_{3549}(3281,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.2183725770062310261333.1

Values on generators

(1184,1522,3382)(1184,1522,3382)(1,e(16),i)(-1,e\left(\frac{1}{6}\right),-i)

First values

aa 1-11122445588101011111616171719192020
χ3549(1760,a) \chi_{ 3549 }(1760, a) 1-111e(712)e\left(\frac{7}{12}\right)e(16)e\left(\frac{1}{6}\right)e(112)e\left(\frac{1}{12}\right)i-ie(23)e\left(\frac{2}{3}\right)e(512)e\left(\frac{5}{12}\right)e(13)e\left(\frac{1}{3}\right)e(16)e\left(\frac{1}{6}\right)e(712)e\left(\frac{7}{12}\right)ii
sage: chi.jacobi_sum(n)
 
χ3549(1760,a)   \chi_{ 3549 }(1760,a) \; at   a=\;a = e.g. 2