Properties

Label 3549.cb
Modulus 35493549
Conductor 273273
Order 1212
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3549, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,2,3]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(437,3549))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 35493549
Conductor: 273273
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 273.cb
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.0.2183725770062310261333.1

Characters in Galois orbit

Character 1-1 11 22 44 55 88 1010 1111 1616 1717 1919 2020
χ3549(437,)\chi_{3549}(437,\cdot) 1-1 11 e(112)e\left(\frac{1}{12}\right) e(16)e\left(\frac{1}{6}\right) e(712)e\left(\frac{7}{12}\right) ii e(23)e\left(\frac{2}{3}\right) e(1112)e\left(\frac{11}{12}\right) e(13)e\left(\frac{1}{3}\right) e(16)e\left(\frac{1}{6}\right) e(112)e\left(\frac{1}{12}\right) i-i
χ3549(1760,)\chi_{3549}(1760,\cdot) 1-1 11 e(712)e\left(\frac{7}{12}\right) e(16)e\left(\frac{1}{6}\right) e(112)e\left(\frac{1}{12}\right) i-i e(23)e\left(\frac{2}{3}\right) e(512)e\left(\frac{5}{12}\right) e(13)e\left(\frac{1}{3}\right) e(16)e\left(\frac{1}{6}\right) e(712)e\left(\frac{7}{12}\right) ii
χ3549(1958,)\chi_{3549}(1958,\cdot) 1-1 11 e(512)e\left(\frac{5}{12}\right) e(56)e\left(\frac{5}{6}\right) e(1112)e\left(\frac{11}{12}\right) ii e(13)e\left(\frac{1}{3}\right) e(712)e\left(\frac{7}{12}\right) e(23)e\left(\frac{2}{3}\right) e(56)e\left(\frac{5}{6}\right) e(512)e\left(\frac{5}{12}\right) i-i
χ3549(3281,)\chi_{3549}(3281,\cdot) 1-1 11 e(1112)e\left(\frac{11}{12}\right) e(56)e\left(\frac{5}{6}\right) e(512)e\left(\frac{5}{12}\right) i-i e(13)e\left(\frac{1}{3}\right) e(112)e\left(\frac{1}{12}\right) e(23)e\left(\frac{2}{3}\right) e(56)e\left(\frac{5}{6}\right) e(1112)e\left(\frac{11}{12}\right) ii