Basic properties
Modulus: | \(36864\) | |
Conductor: | \(36864\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(3072\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 36864.di
\(\chi_{36864}(13,\cdot)\) \(\chi_{36864}(61,\cdot)\) \(\chi_{36864}(85,\cdot)\) \(\chi_{36864}(133,\cdot)\) \(\chi_{36864}(157,\cdot)\) \(\chi_{36864}(205,\cdot)\) \(\chi_{36864}(229,\cdot)\) \(\chi_{36864}(277,\cdot)\) \(\chi_{36864}(301,\cdot)\) \(\chi_{36864}(349,\cdot)\) \(\chi_{36864}(373,\cdot)\) \(\chi_{36864}(421,\cdot)\) \(\chi_{36864}(445,\cdot)\) \(\chi_{36864}(493,\cdot)\) \(\chi_{36864}(517,\cdot)\) \(\chi_{36864}(565,\cdot)\) \(\chi_{36864}(589,\cdot)\) \(\chi_{36864}(637,\cdot)\) \(\chi_{36864}(661,\cdot)\) \(\chi_{36864}(709,\cdot)\) \(\chi_{36864}(733,\cdot)\) \(\chi_{36864}(781,\cdot)\) \(\chi_{36864}(805,\cdot)\) \(\chi_{36864}(853,\cdot)\) \(\chi_{36864}(877,\cdot)\) \(\chi_{36864}(925,\cdot)\) \(\chi_{36864}(949,\cdot)\) \(\chi_{36864}(997,\cdot)\) \(\chi_{36864}(1021,\cdot)\) \(\chi_{36864}(1069,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{3072})$ |
Fixed field: | Number field defined by a degree 3072 polynomial (not computed) |
Values on generators
\((8191,20485,4097)\) → \((1,e\left(\frac{413}{1024}\right),e\left(\frac{1}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 36864 }(85, a) \) | \(1\) | \(1\) | \(e\left(\frac{215}{3072}\right)\) | \(e\left(\frac{467}{1536}\right)\) | \(e\left(\frac{739}{3072}\right)\) | \(e\left(\frac{2489}{3072}\right)\) | \(e\left(\frac{43}{256}\right)\) | \(e\left(\frac{667}{1024}\right)\) | \(e\left(\frac{1441}{1536}\right)\) | \(e\left(\frac{215}{1536}\right)\) | \(e\left(\frac{2125}{3072}\right)\) | \(e\left(\frac{295}{384}\right)\) |