Properties

Label 36864.85
Modulus 3686436864
Conductor 3686436864
Order 30723072
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36864, base_ring=CyclotomicField(3072))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,1239,1024]))
 
pari: [g,chi] = znchar(Mod(85,36864))
 

Basic properties

Modulus: 3686436864
Conductor: 3686436864
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 30723072
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 36864.di

χ36864(13,)\chi_{36864}(13,\cdot) χ36864(61,)\chi_{36864}(61,\cdot) χ36864(85,)\chi_{36864}(85,\cdot) χ36864(133,)\chi_{36864}(133,\cdot) χ36864(157,)\chi_{36864}(157,\cdot) χ36864(205,)\chi_{36864}(205,\cdot) χ36864(229,)\chi_{36864}(229,\cdot) χ36864(277,)\chi_{36864}(277,\cdot) χ36864(301,)\chi_{36864}(301,\cdot) χ36864(349,)\chi_{36864}(349,\cdot) χ36864(373,)\chi_{36864}(373,\cdot) χ36864(421,)\chi_{36864}(421,\cdot) χ36864(445,)\chi_{36864}(445,\cdot) χ36864(493,)\chi_{36864}(493,\cdot) χ36864(517,)\chi_{36864}(517,\cdot) χ36864(565,)\chi_{36864}(565,\cdot) χ36864(589,)\chi_{36864}(589,\cdot) χ36864(637,)\chi_{36864}(637,\cdot) χ36864(661,)\chi_{36864}(661,\cdot) χ36864(709,)\chi_{36864}(709,\cdot) χ36864(733,)\chi_{36864}(733,\cdot) χ36864(781,)\chi_{36864}(781,\cdot) χ36864(805,)\chi_{36864}(805,\cdot) χ36864(853,)\chi_{36864}(853,\cdot) χ36864(877,)\chi_{36864}(877,\cdot) χ36864(925,)\chi_{36864}(925,\cdot) χ36864(949,)\chi_{36864}(949,\cdot) χ36864(997,)\chi_{36864}(997,\cdot) χ36864(1021,)\chi_{36864}(1021,\cdot) χ36864(1069,)\chi_{36864}(1069,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3072)\Q(\zeta_{3072})
Fixed field: Number field defined by a degree 3072 polynomial (not computed)

Values on generators

(8191,20485,4097)(8191,20485,4097)(1,e(4131024),e(13))(1,e\left(\frac{413}{1024}\right),e\left(\frac{1}{3}\right))

First values

aa 1-111557711111313171719192323252529293131
χ36864(85,a) \chi_{ 36864 }(85, a) 1111e(2153072)e\left(\frac{215}{3072}\right)e(4671536)e\left(\frac{467}{1536}\right)e(7393072)e\left(\frac{739}{3072}\right)e(24893072)e\left(\frac{2489}{3072}\right)e(43256)e\left(\frac{43}{256}\right)e(6671024)e\left(\frac{667}{1024}\right)e(14411536)e\left(\frac{1441}{1536}\right)e(2151536)e\left(\frac{215}{1536}\right)e(21253072)e\left(\frac{2125}{3072}\right)e(295384)e\left(\frac{295}{384}\right)
sage: chi.jacobi_sum(n)
 
χ36864(85,a)   \chi_{ 36864 }(85,a) \; at   a=\;a = e.g. 2