from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,15,9,25]))
pari: [g,chi] = znchar(Mod(1589,3800))
Basic properties
Modulus: | \(3800\) | |
Conductor: | \(3800\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3800.dn
\(\chi_{3800}(69,\cdot)\) \(\chi_{3800}(829,\cdot)\) \(\chi_{3800}(1509,\cdot)\) \(\chi_{3800}(1589,\cdot)\) \(\chi_{3800}(2269,\cdot)\) \(\chi_{3800}(3029,\cdot)\) \(\chi_{3800}(3109,\cdot)\) \(\chi_{3800}(3789,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 30 polynomial |
Values on generators
\((951,1901,1977,401)\) → \((1,-1,e\left(\frac{3}{10}\right),e\left(\frac{5}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
\( \chi_{ 3800 }(1589, a) \) | \(-1\) | \(1\) | \(e\left(\frac{13}{30}\right)\) | \(-1\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{4}{15}\right)\) |
sage: chi.jacobi_sum(n)