Properties

Label 3800.69
Modulus $3800$
Conductor $3800$
Order $30$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,15,27,25]))
 
pari: [g,chi] = znchar(Mod(69,3800))
 

Basic properties

Modulus: \(3800\)
Conductor: \(3800\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3800.dn

\(\chi_{3800}(69,\cdot)\) \(\chi_{3800}(829,\cdot)\) \(\chi_{3800}(1509,\cdot)\) \(\chi_{3800}(1589,\cdot)\) \(\chi_{3800}(2269,\cdot)\) \(\chi_{3800}(3029,\cdot)\) \(\chi_{3800}(3109,\cdot)\) \(\chi_{3800}(3789,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

\((951,1901,1977,401)\) → \((1,-1,e\left(\frac{9}{10}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3800 }(69, a) \) \(-1\)\(1\)\(e\left(\frac{19}{30}\right)\)\(-1\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{7}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3800 }(69,a) \;\) at \(\;a = \) e.g. 2