sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([45,45,81,70]))
pari:[g,chi] = znchar(Mod(2419,3800))
Modulus: | 3800 | |
Conductor: | 3800 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 90 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3800(139,⋅)
χ3800(339,⋅)
χ3800(579,⋅)
χ3800(739,⋅)
χ3800(859,⋅)
χ3800(1259,⋅)
χ3800(1339,⋅)
χ3800(1619,⋅)
χ3800(1659,⋅)
χ3800(1859,⋅)
χ3800(2019,⋅)
χ3800(2259,⋅)
χ3800(2379,⋅)
χ3800(2419,⋅)
χ3800(2619,⋅)
χ3800(2779,⋅)
χ3800(2859,⋅)
χ3800(3019,⋅)
χ3800(3139,⋅)
χ3800(3179,⋅)
χ3800(3379,⋅)
χ3800(3539,⋅)
χ3800(3619,⋅)
χ3800(3779,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(951,1901,1977,401) → (−1,−1,e(109),e(97))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ3800(2419,a) |
−1 | 1 | e(9037) | e(32) | e(4537) | e(1511) | e(4522) | e(9043) | e(907) | e(4543) | e(307) | e(9047) |
sage:chi.jacobi_sum(n)