from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3800, base_ring=CyclotomicField(90))
M = H._module
chi = DirichletCharacter(H, M([45,45,27,70]))
chi.galois_orbit()
[g,chi] = znchar(Mod(139,3800))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(3800\) | |
Conductor: | \(3800\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(90\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{45})$ |
Fixed field: | Number field defined by a degree 90 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(21\) | \(23\) | \(27\) | \(29\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{3800}(139,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{29}{90}\right)\) |
\(\chi_{3800}(339,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{79}{90}\right)\) |
\(\chi_{3800}(579,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{23}{90}\right)\) |
\(\chi_{3800}(739,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{49}{90}\right)\) |
\(\chi_{3800}(859,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{71}{90}\right)\) |
\(\chi_{3800}(1259,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{44}{45}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{1}{90}\right)\) |
\(\chi_{3800}(1339,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{19}{45}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{59}{90}\right)\) |
\(\chi_{3800}(1619,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{17}{90}\right)\) |
\(\chi_{3800}(1659,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{31}{45}\right)\) | \(e\left(\frac{79}{90}\right)\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{11}{90}\right)\) |
\(\chi_{3800}(1859,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{41}{45}\right)\) | \(e\left(\frac{29}{90}\right)\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{61}{90}\right)\) |
\(\chi_{3800}(2019,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{37}{90}\right)\) |
\(\chi_{3800}(2259,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{11}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{11}{45}\right)\) | \(e\left(\frac{13}{15}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{41}{90}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{11}{30}\right)\) | \(e\left(\frac{31}{90}\right)\) |
\(\chi_{3800}(2379,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{53}{90}\right)\) |
\(\chi_{3800}(2419,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{37}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{22}{45}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{43}{45}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{47}{90}\right)\) |
\(\chi_{3800}(2619,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{7}{90}\right)\) |
\(\chi_{3800}(2779,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{17}{90}\right)\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{73}{90}\right)\) |
\(\chi_{3800}(2859,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{61}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{16}{45}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{31}{90}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{41}{90}\right)\) |
\(\chi_{3800}(3019,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{17}{45}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{17}{30}\right)\) | \(e\left(\frac{67}{90}\right)\) |
\(\chi_{3800}(3139,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{49}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{4}{45}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{1}{90}\right)\) | \(e\left(\frac{19}{90}\right)\) | \(e\left(\frac{1}{45}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{89}{90}\right)\) |
\(\chi_{3800}(3179,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{73}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{28}{45}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{43}{90}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{13}{30}\right)\) | \(e\left(\frac{83}{90}\right)\) |
\(\chi_{3800}(3379,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{53}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{23}{45}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{2}{45}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{43}{90}\right)\) |
\(\chi_{3800}(3539,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{59}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{14}{45}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{29}{45}\right)\) | \(e\left(\frac{71}{90}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{26}{45}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{19}{90}\right)\) |
\(\chi_{3800}(3619,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{7}{90}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{45}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{37}{45}\right)\) | \(e\left(\frac{13}{90}\right)\) | \(e\left(\frac{67}{90}\right)\) | \(e\left(\frac{13}{45}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{77}{90}\right)\) |
\(\chi_{3800}(3779,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{83}{90}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{38}{45}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{8}{45}\right)\) | \(e\left(\frac{77}{90}\right)\) | \(e\left(\frac{23}{90}\right)\) | \(e\left(\frac{32}{45}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{13}{90}\right)\) |