Properties

Label 3800.ev
Modulus $3800$
Conductor $3800$
Order $90$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3800, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([45,45,27,70]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(139,3800))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3800\)
Conductor: \(3800\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{3800}(139,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{29}{90}\right)\)
\(\chi_{3800}(339,\cdot)\) \(-1\) \(1\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{79}{90}\right)\)
\(\chi_{3800}(579,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{23}{90}\right)\)
\(\chi_{3800}(739,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{49}{90}\right)\)
\(\chi_{3800}(859,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{71}{90}\right)\)
\(\chi_{3800}(1259,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{90}\right)\)
\(\chi_{3800}(1339,\cdot)\) \(-1\) \(1\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{19}{45}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{59}{90}\right)\)
\(\chi_{3800}(1619,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{17}{90}\right)\)
\(\chi_{3800}(1659,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{11}{90}\right)\)
\(\chi_{3800}(1859,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{61}{90}\right)\)
\(\chi_{3800}(2019,\cdot)\) \(-1\) \(1\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{37}{90}\right)\)
\(\chi_{3800}(2259,\cdot)\) \(-1\) \(1\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{41}{90}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{31}{90}\right)\)
\(\chi_{3800}(2379,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{53}{90}\right)\)
\(\chi_{3800}(2419,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{43}{45}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{47}{90}\right)\)
\(\chi_{3800}(2619,\cdot)\) \(-1\) \(1\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{7}{90}\right)\)
\(\chi_{3800}(2779,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{17}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{73}{90}\right)\)
\(\chi_{3800}(2859,\cdot)\) \(-1\) \(1\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{41}{90}\right)\)
\(\chi_{3800}(3019,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{17}{45}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{67}{90}\right)\)
\(\chi_{3800}(3139,\cdot)\) \(-1\) \(1\) \(e\left(\frac{49}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{1}{90}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{1}{45}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{89}{90}\right)\)
\(\chi_{3800}(3179,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{83}{90}\right)\)
\(\chi_{3800}(3379,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{23}{45}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{2}{45}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{43}{90}\right)\)
\(\chi_{3800}(3539,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{29}{45}\right)\) \(e\left(\frac{71}{90}\right)\) \(e\left(\frac{89}{90}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{19}{90}\right)\)
\(\chi_{3800}(3619,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{37}{45}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{77}{90}\right)\)
\(\chi_{3800}(3779,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{38}{45}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{13}{90}\right)\)