from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3822, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,40,0]))
pari: [g,chi] = znchar(Mod(1873,3822))
Basic properties
Modulus: | \(3822\) | |
Conductor: | \(49\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(21\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{49}(11,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3822.ct
\(\chi_{3822}(235,\cdot)\) \(\chi_{3822}(625,\cdot)\) \(\chi_{3822}(781,\cdot)\) \(\chi_{3822}(1171,\cdot)\) \(\chi_{3822}(1327,\cdot)\) \(\chi_{3822}(1717,\cdot)\) \(\chi_{3822}(1873,\cdot)\) \(\chi_{3822}(2263,\cdot)\) \(\chi_{3822}(2809,\cdot)\) \(\chi_{3822}(2965,\cdot)\) \(\chi_{3822}(3355,\cdot)\) \(\chi_{3822}(3511,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 21 polynomial |
Values on generators
\((2549,3433,1471)\) → \((1,e\left(\frac{20}{21}\right),1)\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 3822 }(1873, a) \) | \(1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) |
sage: chi.jacobi_sum(n)