Properties

Label 3822.3355
Modulus $3822$
Conductor $49$
Order $21$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3822, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,38,0]))
 
pari: [g,chi] = znchar(Mod(3355,3822))
 

Basic properties

Modulus: \(3822\)
Conductor: \(49\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(21\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{49}(23,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3822.ct

\(\chi_{3822}(235,\cdot)\) \(\chi_{3822}(625,\cdot)\) \(\chi_{3822}(781,\cdot)\) \(\chi_{3822}(1171,\cdot)\) \(\chi_{3822}(1327,\cdot)\) \(\chi_{3822}(1717,\cdot)\) \(\chi_{3822}(1873,\cdot)\) \(\chi_{3822}(2263,\cdot)\) \(\chi_{3822}(2809,\cdot)\) \(\chi_{3822}(2965,\cdot)\) \(\chi_{3822}(3355,\cdot)\) \(\chi_{3822}(3511,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 21 polynomial

Values on generators

\((2549,3433,1471)\) → \((1,e\left(\frac{19}{21}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3822 }(3355, a) \) \(1\)\(1\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{10}{21}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{20}{21}\right)\)\(e\left(\frac{4}{7}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3822 }(3355,a) \;\) at \(\;a = \) e.g. 2