from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3822, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,41,35]))
pari: [g,chi] = znchar(Mod(1895,3822))
Basic properties
Modulus: | \(3822\) | |
Conductor: | \(1911\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1911}(1895,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3822.dh
\(\chi_{3822}(17,\cdot)\) \(\chi_{3822}(257,\cdot)\) \(\chi_{3822}(563,\cdot)\) \(\chi_{3822}(1349,\cdot)\) \(\chi_{3822}(1655,\cdot)\) \(\chi_{3822}(1895,\cdot)\) \(\chi_{3822}(2201,\cdot)\) \(\chi_{3822}(2441,\cdot)\) \(\chi_{3822}(2747,\cdot)\) \(\chi_{3822}(2987,\cdot)\) \(\chi_{3822}(3293,\cdot)\) \(\chi_{3822}(3533,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | 42.42.1202576633106121975984008800872230106954348943357258503089346642257329625784069269338733771636030016535855830219497.1 |
Values on generators
\((2549,3433,1471)\) → \((-1,e\left(\frac{41}{42}\right),e\left(\frac{5}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
\( \chi_{ 3822 }(1895, a) \) | \(1\) | \(1\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{41}{42}\right)\) |
sage: chi.jacobi_sum(n)