Properties

Label 3822.1895
Modulus $3822$
Conductor $1911$
Order $42$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3822, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,41,35]))
 
pari: [g,chi] = znchar(Mod(1895,3822))
 

Basic properties

Modulus: \(3822\)
Conductor: \(1911\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1911}(1895,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3822.dh

\(\chi_{3822}(17,\cdot)\) \(\chi_{3822}(257,\cdot)\) \(\chi_{3822}(563,\cdot)\) \(\chi_{3822}(1349,\cdot)\) \(\chi_{3822}(1655,\cdot)\) \(\chi_{3822}(1895,\cdot)\) \(\chi_{3822}(2201,\cdot)\) \(\chi_{3822}(2441,\cdot)\) \(\chi_{3822}(2747,\cdot)\) \(\chi_{3822}(2987,\cdot)\) \(\chi_{3822}(3293,\cdot)\) \(\chi_{3822}(3533,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.42.1202576633106121975984008800872230106954348943357258503089346642257329625784069269338733771636030016535855830219497.1

Values on generators

\((2549,3433,1471)\) → \((-1,e\left(\frac{41}{42}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 3822 }(1895, a) \) \(1\)\(1\)\(e\left(\frac{13}{42}\right)\)\(e\left(\frac{8}{21}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{41}{42}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3822 }(1895,a) \;\) at \(\;a = \) e.g. 2