Properties

Label 3822.dh
Modulus $3822$
Conductor $1911$
Order $42$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3822, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([21,25,7]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(17,3822))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3822\)
Conductor: \(1911\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1911.cy
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.42.1202576633106121975984008800872230106954348943357258503089346642257329625784069269338733771636030016535855830219497.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{3822}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{25}{42}\right)\)
\(\chi_{3822}(257,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{11}{42}\right)\)
\(\chi_{3822}(563,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{42}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{37}{42}\right)\)
\(\chi_{3822}(1349,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{17}{42}\right)\)
\(\chi_{3822}(1655,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{42}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{19}{42}\right)\)
\(\chi_{3822}(1895,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{42}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{41}{42}\right)\)
\(\chi_{3822}(2201,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{42}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{14}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{14}\right)\) \(e\left(\frac{31}{42}\right)\)
\(\chi_{3822}(2441,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{42}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{23}{42}\right)\)
\(\chi_{3822}(2747,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{42}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{25}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{1}{42}\right)\)
\(\chi_{3822}(2987,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{14}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{9}{14}\right)\) \(e\left(\frac{5}{42}\right)\)
\(\chi_{3822}(3293,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{42}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{31}{42}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{13}{42}\right)\)
\(\chi_{3822}(3533,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{42}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{14}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{11}{42}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{14}\right)\) \(e\left(\frac{29}{42}\right)\)