Properties

Label 387.379
Modulus 387387
Conductor 4343
Order 77
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(387, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,6]))
 
pari: [g,chi] = znchar(Mod(379,387))
 

Basic properties

Modulus: 387387
Conductor: 4343
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 77
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ43(35,)\chi_{43}(35,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 387.u

χ387(64,)\chi_{387}(64,\cdot) χ387(127,)\chi_{387}(127,\cdot) χ387(145,)\chi_{387}(145,\cdot) χ387(226,)\chi_{387}(226,\cdot) χ387(262,)\chi_{387}(262,\cdot) χ387(379,)\chi_{387}(379,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ7)\Q(\zeta_{7})
Fixed field: 7.7.6321363049.1

Values on generators

(173,46)(173,46)(1,e(37))(1,e\left(\frac{3}{7}\right))

First values

aa 1-111224455778810101111131314141616
χ387(379,a) \chi_{ 387 }(379, a) 1111e(47)e\left(\frac{4}{7}\right)e(17)e\left(\frac{1}{7}\right)e(57)e\left(\frac{5}{7}\right)11e(57)e\left(\frac{5}{7}\right)e(27)e\left(\frac{2}{7}\right)e(67)e\left(\frac{6}{7}\right)e(57)e\left(\frac{5}{7}\right)e(47)e\left(\frac{4}{7}\right)e(27)e\left(\frac{2}{7}\right)
sage: chi.jacobi_sum(n)
 
χ387(379,a)   \chi_{ 387 }(379,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ387(379,))   \tau_{ a }( \chi_{ 387 }(379,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ387(379,),χ387(n,))   J(\chi_{ 387 }(379,·),\chi_{ 387 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ387(379,))  K(a,b,\chi_{ 387 }(379,·)) \; at   a,b=\; a,b = e.g. 1,2