Properties

Label 387.u
Modulus $387$
Conductor $43$
Order $7$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(387, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,12]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(64,387))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(387\)
Conductor: \(43\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(7\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 43.e
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 7.7.6321363049.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{387}(64,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{4}{7}\right)\)
\(\chi_{387}(127,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{3}{7}\right)\)
\(\chi_{387}(145,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{5}{7}\right)\)
\(\chi_{387}(226,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(1\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{1}{7}\right)\)
\(\chi_{387}(262,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{3}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(1\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{6}{7}\right)\)
\(\chi_{387}(379,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{1}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(1\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{2}{7}\right)\) \(e\left(\frac{6}{7}\right)\) \(e\left(\frac{5}{7}\right)\) \(e\left(\frac{4}{7}\right)\) \(e\left(\frac{2}{7}\right)\)