Properties

Label 3872.1839
Modulus 38723872
Conductor 968968
Order 110110
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3872, base_ring=CyclotomicField(110)) M = H._module chi = DirichletCharacter(H, M([55,55,91]))
 
Copy content pari:[g,chi] = znchar(Mod(1839,3872))
 

Basic properties

Modulus: 38723872
Conductor: 968968
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 110110
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ968(387,)\chi_{968}(387,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3872.by

χ3872(79,)\chi_{3872}(79,\cdot) χ3872(271,)\chi_{3872}(271,\cdot) χ3872(303,)\chi_{3872}(303,\cdot) χ3872(431,)\chi_{3872}(431,\cdot) χ3872(591,)\chi_{3872}(591,\cdot) χ3872(623,)\chi_{3872}(623,\cdot) χ3872(655,)\chi_{3872}(655,\cdot) χ3872(783,)\chi_{3872}(783,\cdot) χ3872(943,)\chi_{3872}(943,\cdot) χ3872(975,)\chi_{3872}(975,\cdot) χ3872(1007,)\chi_{3872}(1007,\cdot) χ3872(1135,)\chi_{3872}(1135,\cdot) χ3872(1295,)\chi_{3872}(1295,\cdot) χ3872(1327,)\chi_{3872}(1327,\cdot) χ3872(1359,)\chi_{3872}(1359,\cdot) χ3872(1487,)\chi_{3872}(1487,\cdot) χ3872(1647,)\chi_{3872}(1647,\cdot) χ3872(1679,)\chi_{3872}(1679,\cdot) χ3872(1711,)\chi_{3872}(1711,\cdot) χ3872(1839,)\chi_{3872}(1839,\cdot) χ3872(1999,)\chi_{3872}(1999,\cdot) χ3872(2031,)\chi_{3872}(2031,\cdot) χ3872(2063,)\chi_{3872}(2063,\cdot) χ3872(2191,)\chi_{3872}(2191,\cdot) χ3872(2351,)\chi_{3872}(2351,\cdot) χ3872(2383,)\chi_{3872}(2383,\cdot) χ3872(2415,)\chi_{3872}(2415,\cdot) χ3872(2543,)\chi_{3872}(2543,\cdot) χ3872(2703,)\chi_{3872}(2703,\cdot) χ3872(2735,)\chi_{3872}(2735,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

(1695,485,2785)(1695,485,2785)(1,1,e(91110))(-1,-1,e\left(\frac{91}{110}\right))

First values

aa 1-11133557799131315151717191921212323
χ3872(1839,a) \chi_{ 3872 }(1839, a) 1111e(45)e\left(\frac{4}{5}\right)e(79110)e\left(\frac{79}{110}\right)e(1655)e\left(\frac{16}{55}\right)e(35)e\left(\frac{3}{5}\right)e(355)e\left(\frac{3}{55}\right)e(57110)e\left(\frac{57}{110}\right)e(59110)e\left(\frac{59}{110}\right)e(73110)e\left(\frac{73}{110}\right)e(111)e\left(\frac{1}{11}\right)e(922)e\left(\frac{9}{22}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ3872(1839,a)   \chi_{ 3872 }(1839,a) \; at   a=\;a = e.g. 2