Properties

Label 3872.2383
Modulus $3872$
Conductor $968$
Order $110$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3872, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,55,97]))
 
pari: [g,chi] = znchar(Mod(2383,3872))
 

Basic properties

Modulus: \(3872\)
Conductor: \(968\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{968}(931,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3872.by

\(\chi_{3872}(79,\cdot)\) \(\chi_{3872}(271,\cdot)\) \(\chi_{3872}(303,\cdot)\) \(\chi_{3872}(431,\cdot)\) \(\chi_{3872}(591,\cdot)\) \(\chi_{3872}(623,\cdot)\) \(\chi_{3872}(655,\cdot)\) \(\chi_{3872}(783,\cdot)\) \(\chi_{3872}(943,\cdot)\) \(\chi_{3872}(975,\cdot)\) \(\chi_{3872}(1007,\cdot)\) \(\chi_{3872}(1135,\cdot)\) \(\chi_{3872}(1295,\cdot)\) \(\chi_{3872}(1327,\cdot)\) \(\chi_{3872}(1359,\cdot)\) \(\chi_{3872}(1487,\cdot)\) \(\chi_{3872}(1647,\cdot)\) \(\chi_{3872}(1679,\cdot)\) \(\chi_{3872}(1711,\cdot)\) \(\chi_{3872}(1839,\cdot)\) \(\chi_{3872}(1999,\cdot)\) \(\chi_{3872}(2031,\cdot)\) \(\chi_{3872}(2063,\cdot)\) \(\chi_{3872}(2191,\cdot)\) \(\chi_{3872}(2351,\cdot)\) \(\chi_{3872}(2383,\cdot)\) \(\chi_{3872}(2415,\cdot)\) \(\chi_{3872}(2543,\cdot)\) \(\chi_{3872}(2703,\cdot)\) \(\chi_{3872}(2735,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((1695,485,2785)\) → \((-1,-1,e\left(\frac{97}{110}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(13\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 3872 }(2383, a) \) \(1\)\(1\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{83}{110}\right)\)\(e\left(\frac{37}{55}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{31}{55}\right)\)\(e\left(\frac{39}{110}\right)\)\(e\left(\frac{23}{110}\right)\)\(e\left(\frac{21}{110}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{5}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3872 }(2383,a) \;\) at \(\;a = \) e.g. 2