Properties

Label 3888.2251
Modulus $3888$
Conductor $1296$
Order $108$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([54,27,4]))
 
pari: [g,chi] = znchar(Mod(2251,3888))
 

Basic properties

Modulus: \(3888\)
Conductor: \(1296\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1296}(571,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3888.bu

\(\chi_{3888}(19,\cdot)\) \(\chi_{3888}(91,\cdot)\) \(\chi_{3888}(235,\cdot)\) \(\chi_{3888}(307,\cdot)\) \(\chi_{3888}(451,\cdot)\) \(\chi_{3888}(523,\cdot)\) \(\chi_{3888}(667,\cdot)\) \(\chi_{3888}(739,\cdot)\) \(\chi_{3888}(883,\cdot)\) \(\chi_{3888}(955,\cdot)\) \(\chi_{3888}(1099,\cdot)\) \(\chi_{3888}(1171,\cdot)\) \(\chi_{3888}(1315,\cdot)\) \(\chi_{3888}(1387,\cdot)\) \(\chi_{3888}(1531,\cdot)\) \(\chi_{3888}(1603,\cdot)\) \(\chi_{3888}(1747,\cdot)\) \(\chi_{3888}(1819,\cdot)\) \(\chi_{3888}(1963,\cdot)\) \(\chi_{3888}(2035,\cdot)\) \(\chi_{3888}(2179,\cdot)\) \(\chi_{3888}(2251,\cdot)\) \(\chi_{3888}(2395,\cdot)\) \(\chi_{3888}(2467,\cdot)\) \(\chi_{3888}(2611,\cdot)\) \(\chi_{3888}(2683,\cdot)\) \(\chi_{3888}(2827,\cdot)\) \(\chi_{3888}(2899,\cdot)\) \(\chi_{3888}(3043,\cdot)\) \(\chi_{3888}(3115,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((2431,2917,1217)\) → \((-1,i,e\left(\frac{1}{27}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 3888 }(2251, a) \) \(-1\)\(1\)\(e\left(\frac{11}{108}\right)\)\(e\left(\frac{16}{27}\right)\)\(e\left(\frac{25}{108}\right)\)\(e\left(\frac{5}{108}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{11}{27}\right)\)\(e\left(\frac{11}{54}\right)\)\(e\left(\frac{13}{108}\right)\)\(e\left(\frac{13}{54}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3888 }(2251,a) \;\) at \(\;a = \) e.g. 2