from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3888, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([54,27,52]))
pari: [g,chi] = znchar(Mod(91,3888))
χ3888(19,⋅)
χ3888(91,⋅)
χ3888(235,⋅)
χ3888(307,⋅)
χ3888(451,⋅)
χ3888(523,⋅)
χ3888(667,⋅)
χ3888(739,⋅)
χ3888(883,⋅)
χ3888(955,⋅)
χ3888(1099,⋅)
χ3888(1171,⋅)
χ3888(1315,⋅)
χ3888(1387,⋅)
χ3888(1531,⋅)
χ3888(1603,⋅)
χ3888(1747,⋅)
χ3888(1819,⋅)
χ3888(1963,⋅)
χ3888(2035,⋅)
χ3888(2179,⋅)
χ3888(2251,⋅)
χ3888(2395,⋅)
χ3888(2467,⋅)
χ3888(2611,⋅)
χ3888(2683,⋅)
χ3888(2827,⋅)
χ3888(2899,⋅)
χ3888(3043,⋅)
χ3888(3115,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2431,2917,1217) → (−1,i,e(2713))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ3888(91,a) |
−1 | 1 | e(10835) | e(2719) | e(1081) | e(10865) | e(98) | e(3613) | e(278) | e(5435) | e(10861) | e(547) |