Properties

Label 3888.2557
Modulus $3888$
Conductor $1296$
Order $108$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,81,80]))
 
pari: [g,chi] = znchar(Mod(2557,3888))
 

Basic properties

Modulus: \(3888\)
Conductor: \(1296\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1296}(637,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3888.bw

\(\chi_{3888}(37,\cdot)\) \(\chi_{3888}(181,\cdot)\) \(\chi_{3888}(253,\cdot)\) \(\chi_{3888}(397,\cdot)\) \(\chi_{3888}(469,\cdot)\) \(\chi_{3888}(613,\cdot)\) \(\chi_{3888}(685,\cdot)\) \(\chi_{3888}(829,\cdot)\) \(\chi_{3888}(901,\cdot)\) \(\chi_{3888}(1045,\cdot)\) \(\chi_{3888}(1117,\cdot)\) \(\chi_{3888}(1261,\cdot)\) \(\chi_{3888}(1333,\cdot)\) \(\chi_{3888}(1477,\cdot)\) \(\chi_{3888}(1549,\cdot)\) \(\chi_{3888}(1693,\cdot)\) \(\chi_{3888}(1765,\cdot)\) \(\chi_{3888}(1909,\cdot)\) \(\chi_{3888}(1981,\cdot)\) \(\chi_{3888}(2125,\cdot)\) \(\chi_{3888}(2197,\cdot)\) \(\chi_{3888}(2341,\cdot)\) \(\chi_{3888}(2413,\cdot)\) \(\chi_{3888}(2557,\cdot)\) \(\chi_{3888}(2629,\cdot)\) \(\chi_{3888}(2773,\cdot)\) \(\chi_{3888}(2845,\cdot)\) \(\chi_{3888}(2989,\cdot)\) \(\chi_{3888}(3061,\cdot)\) \(\chi_{3888}(3205,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((2431,2917,1217)\) → \((1,-i,e\left(\frac{20}{27}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 3888 }(2557, a) \) \(1\)\(1\)\(e\left(\frac{85}{108}\right)\)\(e\left(\frac{19}{54}\right)\)\(e\left(\frac{41}{108}\right)\)\(e\left(\frac{19}{108}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{35}{54}\right)\)\(e\left(\frac{31}{54}\right)\)\(e\left(\frac{71}{108}\right)\)\(e\left(\frac{22}{27}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3888 }(2557,a) \;\) at \(\;a = \) e.g. 2