sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3888, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([0,81,80]))
pari:[g,chi] = znchar(Mod(2557,3888))
χ3888(37,⋅)
χ3888(181,⋅)
χ3888(253,⋅)
χ3888(397,⋅)
χ3888(469,⋅)
χ3888(613,⋅)
χ3888(685,⋅)
χ3888(829,⋅)
χ3888(901,⋅)
χ3888(1045,⋅)
χ3888(1117,⋅)
χ3888(1261,⋅)
χ3888(1333,⋅)
χ3888(1477,⋅)
χ3888(1549,⋅)
χ3888(1693,⋅)
χ3888(1765,⋅)
χ3888(1909,⋅)
χ3888(1981,⋅)
χ3888(2125,⋅)
χ3888(2197,⋅)
χ3888(2341,⋅)
χ3888(2413,⋅)
χ3888(2557,⋅)
χ3888(2629,⋅)
χ3888(2773,⋅)
χ3888(2845,⋅)
χ3888(2989,⋅)
χ3888(3061,⋅)
χ3888(3205,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2431,2917,1217) → (1,−i,e(2720))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ3888(2557,a) |
1 | 1 | e(10885) | e(5419) | e(10841) | e(10819) | e(94) | e(3629) | e(5435) | e(5431) | e(10871) | e(2722) |
sage:chi.jacobi_sum(n)