Properties

Label 3888.37
Modulus 38883888
Conductor 12961296
Order 108108
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,27,64]))
 
pari: [g,chi] = znchar(Mod(37,3888))
 

Basic properties

Modulus: 38883888
Conductor: 12961296
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 108108
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1296(373,)\chi_{1296}(373,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3888.bw

χ3888(37,)\chi_{3888}(37,\cdot) χ3888(181,)\chi_{3888}(181,\cdot) χ3888(253,)\chi_{3888}(253,\cdot) χ3888(397,)\chi_{3888}(397,\cdot) χ3888(469,)\chi_{3888}(469,\cdot) χ3888(613,)\chi_{3888}(613,\cdot) χ3888(685,)\chi_{3888}(685,\cdot) χ3888(829,)\chi_{3888}(829,\cdot) χ3888(901,)\chi_{3888}(901,\cdot) χ3888(1045,)\chi_{3888}(1045,\cdot) χ3888(1117,)\chi_{3888}(1117,\cdot) χ3888(1261,)\chi_{3888}(1261,\cdot) χ3888(1333,)\chi_{3888}(1333,\cdot) χ3888(1477,)\chi_{3888}(1477,\cdot) χ3888(1549,)\chi_{3888}(1549,\cdot) χ3888(1693,)\chi_{3888}(1693,\cdot) χ3888(1765,)\chi_{3888}(1765,\cdot) χ3888(1909,)\chi_{3888}(1909,\cdot) χ3888(1981,)\chi_{3888}(1981,\cdot) χ3888(2125,)\chi_{3888}(2125,\cdot) χ3888(2197,)\chi_{3888}(2197,\cdot) χ3888(2341,)\chi_{3888}(2341,\cdot) χ3888(2413,)\chi_{3888}(2413,\cdot) χ3888(2557,)\chi_{3888}(2557,\cdot) χ3888(2629,)\chi_{3888}(2629,\cdot) χ3888(2773,)\chi_{3888}(2773,\cdot) χ3888(2845,)\chi_{3888}(2845,\cdot) χ3888(2989,)\chi_{3888}(2989,\cdot) χ3888(3061,)\chi_{3888}(3061,\cdot) χ3888(3205,)\chi_{3888}(3205,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ108)\Q(\zeta_{108})
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

(2431,2917,1217)(2431,2917,1217)(1,i,e(1627))(1,i,e\left(\frac{16}{27}\right))

First values

aa 1-111557711111313171719192323252529293131
χ3888(37,a) \chi_{ 3888 }(37, a) 1111e(95108)e\left(\frac{95}{108}\right)e(5354)e\left(\frac{53}{54}\right)e(103108)e\left(\frac{103}{108}\right)e(53108)e\left(\frac{53}{108}\right)e(59)e\left(\frac{5}{9}\right)e(736)e\left(\frac{7}{36}\right)e(154)e\left(\frac{1}{54}\right)e(4154)e\left(\frac{41}{54}\right)e(73108)e\left(\frac{73}{108}\right)e(2327)e\left(\frac{23}{27}\right)
sage: chi.jacobi_sum(n)
 
χ3888(37,a)   \chi_{ 3888 }(37,a) \; at   a=\;a = e.g. 2