Properties

Label 3888.55
Modulus 38883888
Conductor 216216
Order 1818
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(18))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,9,16]))
 
pari: [g,chi] = znchar(Mod(55,3888))
 

Basic properties

Modulus: 38883888
Conductor: 216216
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1818
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ216(115,)\chi_{216}(115,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3888.z

χ3888(55,)\chi_{3888}(55,\cdot) χ3888(919,)\chi_{3888}(919,\cdot) χ3888(1351,)\chi_{3888}(1351,\cdot) χ3888(2215,)\chi_{3888}(2215,\cdot) χ3888(2647,)\chi_{3888}(2647,\cdot) χ3888(3511,)\chi_{3888}(3511,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.0.132173713091594538512566714368.2

Values on generators

(2431,2917,1217)(2431,2917,1217)(1,1,e(89))(-1,-1,e\left(\frac{8}{9}\right))

First values

aa 1-111557711111313171719192323252529293131
χ3888(55,a) \chi_{ 3888 }(55, a) 1-111e(1718)e\left(\frac{17}{18}\right)e(1318)e\left(\frac{13}{18}\right)e(59)e\left(\frac{5}{9}\right)e(1118)e\left(\frac{11}{18}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)e(518)e\left(\frac{5}{18}\right)e(89)e\left(\frac{8}{9}\right)e(718)e\left(\frac{7}{18}\right)e(518)e\left(\frac{5}{18}\right)
sage: chi.jacobi_sum(n)
 
χ3888(55,a)   \chi_{ 3888 }(55,a) \; at   a=\;a = e.g. 2