from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3888, base_ring=CyclotomicField(324))
M = H._module
chi = DirichletCharacter(H, M([0,81,112]))
pari: [g,chi] = znchar(Mod(85,3888))
χ3888(13,⋅)
χ3888(61,⋅)
χ3888(85,⋅)
χ3888(133,⋅)
χ3888(157,⋅)
χ3888(205,⋅)
χ3888(229,⋅)
χ3888(277,⋅)
χ3888(301,⋅)
χ3888(349,⋅)
χ3888(373,⋅)
χ3888(421,⋅)
χ3888(445,⋅)
χ3888(493,⋅)
χ3888(517,⋅)
χ3888(565,⋅)
χ3888(589,⋅)
χ3888(637,⋅)
χ3888(661,⋅)
χ3888(709,⋅)
χ3888(733,⋅)
χ3888(781,⋅)
χ3888(805,⋅)
χ3888(853,⋅)
χ3888(877,⋅)
χ3888(925,⋅)
χ3888(949,⋅)
χ3888(997,⋅)
χ3888(1021,⋅)
χ3888(1069,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2431,2917,1217) → (1,i,e(8128))
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ3888(85,a) |
1 | 1 | e(32465) | e(162113) | e(32425) | e(324167) | e(2711) | e(10873) | e(162157) | e(16265) | e(324175) | e(8174) |