Properties

Label 3888.85
Modulus $3888$
Conductor $3888$
Order $324$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(324))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,81,112]))
 
pari: [g,chi] = znchar(Mod(85,3888))
 

Basic properties

Modulus: \(3888\)
Conductor: \(3888\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(324\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3888.ce

\(\chi_{3888}(13,\cdot)\) \(\chi_{3888}(61,\cdot)\) \(\chi_{3888}(85,\cdot)\) \(\chi_{3888}(133,\cdot)\) \(\chi_{3888}(157,\cdot)\) \(\chi_{3888}(205,\cdot)\) \(\chi_{3888}(229,\cdot)\) \(\chi_{3888}(277,\cdot)\) \(\chi_{3888}(301,\cdot)\) \(\chi_{3888}(349,\cdot)\) \(\chi_{3888}(373,\cdot)\) \(\chi_{3888}(421,\cdot)\) \(\chi_{3888}(445,\cdot)\) \(\chi_{3888}(493,\cdot)\) \(\chi_{3888}(517,\cdot)\) \(\chi_{3888}(565,\cdot)\) \(\chi_{3888}(589,\cdot)\) \(\chi_{3888}(637,\cdot)\) \(\chi_{3888}(661,\cdot)\) \(\chi_{3888}(709,\cdot)\) \(\chi_{3888}(733,\cdot)\) \(\chi_{3888}(781,\cdot)\) \(\chi_{3888}(805,\cdot)\) \(\chi_{3888}(853,\cdot)\) \(\chi_{3888}(877,\cdot)\) \(\chi_{3888}(925,\cdot)\) \(\chi_{3888}(949,\cdot)\) \(\chi_{3888}(997,\cdot)\) \(\chi_{3888}(1021,\cdot)\) \(\chi_{3888}(1069,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{324})$
Fixed field: Number field defined by a degree 324 polynomial (not computed)

Values on generators

\((2431,2917,1217)\) → \((1,i,e\left(\frac{28}{81}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 3888 }(85, a) \) \(1\)\(1\)\(e\left(\frac{65}{324}\right)\)\(e\left(\frac{113}{162}\right)\)\(e\left(\frac{25}{324}\right)\)\(e\left(\frac{167}{324}\right)\)\(e\left(\frac{11}{27}\right)\)\(e\left(\frac{73}{108}\right)\)\(e\left(\frac{157}{162}\right)\)\(e\left(\frac{65}{162}\right)\)\(e\left(\frac{175}{324}\right)\)\(e\left(\frac{74}{81}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3888 }(85,a) \;\) at \(\;a = \) e.g. 2