Properties

Label 3888.ce
Modulus $3888$
Conductor $3888$
Order $324$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3888, base_ring=CyclotomicField(324))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,243,16]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(13,3888))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3888\)
Conductor: \(3888\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(324\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{324})$
Fixed field: Number field defined by a degree 324 polynomial (not computed)

First 31 of 108 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{3888}(13,\cdot)\) \(1\) \(1\) \(e\left(\frac{287}{324}\right)\) \(e\left(\frac{155}{162}\right)\) \(e\left(\frac{235}{324}\right)\) \(e\left(\frac{209}{324}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{103}{108}\right)\) \(e\left(\frac{115}{162}\right)\) \(e\left(\frac{125}{162}\right)\) \(e\left(\frac{25}{324}\right)\) \(e\left(\frac{80}{81}\right)\)
\(\chi_{3888}(61,\cdot)\) \(1\) \(1\) \(e\left(\frac{151}{324}\right)\) \(e\left(\frac{103}{162}\right)\) \(e\left(\frac{83}{324}\right)\) \(e\left(\frac{49}{324}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{35}{108}\right)\) \(e\left(\frac{113}{162}\right)\) \(e\left(\frac{151}{162}\right)\) \(e\left(\frac{257}{324}\right)\) \(e\left(\frac{61}{81}\right)\)
\(\chi_{3888}(85,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{324}\right)\) \(e\left(\frac{113}{162}\right)\) \(e\left(\frac{25}{324}\right)\) \(e\left(\frac{167}{324}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{73}{108}\right)\) \(e\left(\frac{157}{162}\right)\) \(e\left(\frac{65}{162}\right)\) \(e\left(\frac{175}{324}\right)\) \(e\left(\frac{74}{81}\right)\)
\(\chi_{3888}(133,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{324}\right)\) \(e\left(\frac{25}{162}\right)\) \(e\left(\frac{17}{324}\right)\) \(e\left(\frac{295}{324}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{41}{108}\right)\) \(e\left(\frac{29}{162}\right)\) \(e\left(\frac{109}{162}\right)\) \(e\left(\frac{119}{324}\right)\) \(e\left(\frac{73}{81}\right)\)
\(\chi_{3888}(157,\cdot)\) \(1\) \(1\) \(e\left(\frac{275}{324}\right)\) \(e\left(\frac{17}{162}\right)\) \(e\left(\frac{31}{324}\right)\) \(e\left(\frac{233}{324}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{43}{108}\right)\) \(e\left(\frac{91}{162}\right)\) \(e\left(\frac{113}{162}\right)\) \(e\left(\frac{217}{324}\right)\) \(e\left(\frac{14}{81}\right)\)
\(\chi_{3888}(205,\cdot)\) \(1\) \(1\) \(e\left(\frac{175}{324}\right)\) \(e\left(\frac{55}{162}\right)\) \(e\left(\frac{167}{324}\right)\) \(e\left(\frac{1}{324}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{47}{108}\right)\) \(e\left(\frac{161}{162}\right)\) \(e\left(\frac{13}{162}\right)\) \(e\left(\frac{197}{324}\right)\) \(e\left(\frac{31}{81}\right)\)
\(\chi_{3888}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{269}{324}\right)\) \(e\left(\frac{29}{162}\right)\) \(e\left(\frac{253}{324}\right)\) \(e\left(\frac{83}{324}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{13}{108}\right)\) \(e\left(\frac{79}{162}\right)\) \(e\left(\frac{107}{162}\right)\) \(e\left(\frac{151}{324}\right)\) \(e\left(\frac{62}{81}\right)\)
\(\chi_{3888}(277,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{324}\right)\) \(e\left(\frac{31}{162}\right)\) \(e\left(\frac{209}{324}\right)\) \(e\left(\frac{139}{324}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{53}{108}\right)\) \(e\left(\frac{23}{162}\right)\) \(e\left(\frac{25}{162}\right)\) \(e\left(\frac{167}{324}\right)\) \(e\left(\frac{16}{81}\right)\)
\(\chi_{3888}(301,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{324}\right)\) \(e\left(\frac{149}{162}\right)\) \(e\left(\frac{43}{324}\right)\) \(e\left(\frac{41}{324}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{91}{108}\right)\) \(e\left(\frac{121}{162}\right)\) \(e\left(\frac{47}{162}\right)\) \(e\left(\frac{301}{324}\right)\) \(e\left(\frac{56}{81}\right)\)
\(\chi_{3888}(349,\cdot)\) \(1\) \(1\) \(e\left(\frac{307}{324}\right)\) \(e\left(\frac{115}{162}\right)\) \(e\left(\frac{143}{324}\right)\) \(e\left(\frac{61}{324}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{59}{108}\right)\) \(e\left(\frac{101}{162}\right)\) \(e\left(\frac{145}{162}\right)\) \(e\left(\frac{29}{324}\right)\) \(e\left(\frac{28}{81}\right)\)
\(\chi_{3888}(373,\cdot)\) \(1\) \(1\) \(e\left(\frac{257}{324}\right)\) \(e\left(\frac{53}{162}\right)\) \(e\left(\frac{49}{324}\right)\) \(e\left(\frac{107}{324}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{61}{108}\right)\) \(e\left(\frac{55}{162}\right)\) \(e\left(\frac{95}{162}\right)\) \(e\left(\frac{19}{324}\right)\) \(e\left(\frac{77}{81}\right)\)
\(\chi_{3888}(421,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{324}\right)\) \(e\left(\frac{145}{162}\right)\) \(e\left(\frac{293}{324}\right)\) \(e\left(\frac{91}{324}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{65}{108}\right)\) \(e\left(\frac{71}{162}\right)\) \(e\left(\frac{49}{162}\right)\) \(e\left(\frac{107}{324}\right)\) \(e\left(\frac{67}{81}\right)\)
\(\chi_{3888}(445,\cdot)\) \(1\) \(1\) \(e\left(\frac{251}{324}\right)\) \(e\left(\frac{65}{162}\right)\) \(e\left(\frac{271}{324}\right)\) \(e\left(\frac{281}{324}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{31}{108}\right)\) \(e\left(\frac{43}{162}\right)\) \(e\left(\frac{89}{162}\right)\) \(e\left(\frac{277}{324}\right)\) \(e\left(\frac{44}{81}\right)\)
\(\chi_{3888}(493,\cdot)\) \(1\) \(1\) \(e\left(\frac{223}{324}\right)\) \(e\left(\frac{121}{162}\right)\) \(e\left(\frac{11}{324}\right)\) \(e\left(\frac{229}{324}\right)\) \(e\left(\frac{7}{27}\right)\) \(e\left(\frac{71}{108}\right)\) \(e\left(\frac{95}{162}\right)\) \(e\left(\frac{61}{162}\right)\) \(e\left(\frac{77}{324}\right)\) \(e\left(\frac{52}{81}\right)\)
\(\chi_{3888}(517,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{324}\right)\) \(e\left(\frac{23}{162}\right)\) \(e\left(\frac{61}{324}\right)\) \(e\left(\frac{239}{324}\right)\) \(e\left(\frac{2}{27}\right)\) \(e\left(\frac{1}{108}\right)\) \(e\left(\frac{85}{162}\right)\) \(e\left(\frac{29}{162}\right)\) \(e\left(\frac{103}{324}\right)\) \(e\left(\frac{38}{81}\right)\)
\(\chi_{3888}(565,\cdot)\) \(1\) \(1\) \(e\left(\frac{181}{324}\right)\) \(e\left(\frac{43}{162}\right)\) \(e\left(\frac{269}{324}\right)\) \(e\left(\frac{151}{324}\right)\) \(e\left(\frac{19}{27}\right)\) \(e\left(\frac{77}{108}\right)\) \(e\left(\frac{11}{162}\right)\) \(e\left(\frac{19}{162}\right)\) \(e\left(\frac{263}{324}\right)\) \(e\left(\frac{64}{81}\right)\)
\(\chi_{3888}(589,\cdot)\) \(1\) \(1\) \(e\left(\frac{239}{324}\right)\) \(e\left(\frac{89}{162}\right)\) \(e\left(\frac{67}{324}\right)\) \(e\left(\frac{305}{324}\right)\) \(e\left(\frac{23}{27}\right)\) \(e\left(\frac{79}{108}\right)\) \(e\left(\frac{19}{162}\right)\) \(e\left(\frac{77}{162}\right)\) \(e\left(\frac{145}{324}\right)\) \(e\left(\frac{59}{81}\right)\)
\(\chi_{3888}(637,\cdot)\) \(1\) \(1\) \(e\left(\frac{247}{324}\right)\) \(e\left(\frac{73}{162}\right)\) \(e\left(\frac{95}{324}\right)\) \(e\left(\frac{181}{324}\right)\) \(e\left(\frac{4}{27}\right)\) \(e\left(\frac{83}{108}\right)\) \(e\left(\frac{143}{162}\right)\) \(e\left(\frac{85}{162}\right)\) \(e\left(\frac{17}{324}\right)\) \(e\left(\frac{22}{81}\right)\)
\(\chi_{3888}(661,\cdot)\) \(1\) \(1\) \(e\left(\frac{233}{324}\right)\) \(e\left(\frac{101}{162}\right)\) \(e\left(\frac{289}{324}\right)\) \(e\left(\frac{155}{324}\right)\) \(e\left(\frac{17}{27}\right)\) \(e\left(\frac{49}{108}\right)\) \(e\left(\frac{7}{162}\right)\) \(e\left(\frac{71}{162}\right)\) \(e\left(\frac{79}{324}\right)\) \(e\left(\frac{26}{81}\right)\)
\(\chi_{3888}(709,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{324}\right)\) \(e\left(\frac{49}{162}\right)\) \(e\left(\frac{137}{324}\right)\) \(e\left(\frac{319}{324}\right)\) \(e\left(\frac{16}{27}\right)\) \(e\left(\frac{89}{108}\right)\) \(e\left(\frac{5}{162}\right)\) \(e\left(\frac{97}{162}\right)\) \(e\left(\frac{311}{324}\right)\) \(e\left(\frac{7}{81}\right)\)
\(\chi_{3888}(733,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{324}\right)\) \(e\left(\frac{59}{162}\right)\) \(e\left(\frac{79}{324}\right)\) \(e\left(\frac{113}{324}\right)\) \(e\left(\frac{11}{27}\right)\) \(e\left(\frac{19}{108}\right)\) \(e\left(\frac{49}{162}\right)\) \(e\left(\frac{11}{162}\right)\) \(e\left(\frac{229}{324}\right)\) \(e\left(\frac{20}{81}\right)\)
\(\chi_{3888}(781,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{324}\right)\) \(e\left(\frac{133}{162}\right)\) \(e\left(\frac{71}{324}\right)\) \(e\left(\frac{241}{324}\right)\) \(e\left(\frac{1}{27}\right)\) \(e\left(\frac{95}{108}\right)\) \(e\left(\frac{83}{162}\right)\) \(e\left(\frac{55}{162}\right)\) \(e\left(\frac{173}{324}\right)\) \(e\left(\frac{19}{81}\right)\)
\(\chi_{3888}(805,\cdot)\) \(1\) \(1\) \(e\left(\frac{221}{324}\right)\) \(e\left(\frac{125}{162}\right)\) \(e\left(\frac{85}{324}\right)\) \(e\left(\frac{179}{324}\right)\) \(e\left(\frac{5}{27}\right)\) \(e\left(\frac{97}{108}\right)\) \(e\left(\frac{145}{162}\right)\) \(e\left(\frac{59}{162}\right)\) \(e\left(\frac{271}{324}\right)\) \(e\left(\frac{41}{81}\right)\)
\(\chi_{3888}(853,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{324}\right)\) \(e\left(\frac{1}{162}\right)\) \(e\left(\frac{221}{324}\right)\) \(e\left(\frac{271}{324}\right)\) \(e\left(\frac{13}{27}\right)\) \(e\left(\frac{101}{108}\right)\) \(e\left(\frac{53}{162}\right)\) \(e\left(\frac{121}{162}\right)\) \(e\left(\frac{251}{324}\right)\) \(e\left(\frac{58}{81}\right)\)
\(\chi_{3888}(877,\cdot)\) \(1\) \(1\) \(e\left(\frac{215}{324}\right)\) \(e\left(\frac{137}{162}\right)\) \(e\left(\frac{307}{324}\right)\) \(e\left(\frac{29}{324}\right)\) \(e\left(\frac{26}{27}\right)\) \(e\left(\frac{67}{108}\right)\) \(e\left(\frac{133}{162}\right)\) \(e\left(\frac{53}{162}\right)\) \(e\left(\frac{205}{324}\right)\) \(e\left(\frac{8}{81}\right)\)
\(\chi_{3888}(925,\cdot)\) \(1\) \(1\) \(e\left(\frac{295}{324}\right)\) \(e\left(\frac{139}{162}\right)\) \(e\left(\frac{263}{324}\right)\) \(e\left(\frac{85}{324}\right)\) \(e\left(\frac{25}{27}\right)\) \(e\left(\frac{107}{108}\right)\) \(e\left(\frac{77}{162}\right)\) \(e\left(\frac{133}{162}\right)\) \(e\left(\frac{221}{324}\right)\) \(e\left(\frac{43}{81}\right)\)
\(\chi_{3888}(949,\cdot)\) \(1\) \(1\) \(e\left(\frac{317}{324}\right)\) \(e\left(\frac{95}{162}\right)\) \(e\left(\frac{97}{324}\right)\) \(e\left(\frac{311}{324}\right)\) \(e\left(\frac{20}{27}\right)\) \(e\left(\frac{37}{108}\right)\) \(e\left(\frac{13}{162}\right)\) \(e\left(\frac{155}{162}\right)\) \(e\left(\frac{31}{324}\right)\) \(e\left(\frac{2}{81}\right)\)
\(\chi_{3888}(997,\cdot)\) \(1\) \(1\) \(e\left(\frac{253}{324}\right)\) \(e\left(\frac{61}{162}\right)\) \(e\left(\frac{197}{324}\right)\) \(e\left(\frac{7}{324}\right)\) \(e\left(\frac{10}{27}\right)\) \(e\left(\frac{5}{108}\right)\) \(e\left(\frac{155}{162}\right)\) \(e\left(\frac{91}{162}\right)\) \(e\left(\frac{83}{324}\right)\) \(e\left(\frac{55}{81}\right)\)
\(\chi_{3888}(1021,\cdot)\) \(1\) \(1\) \(e\left(\frac{203}{324}\right)\) \(e\left(\frac{161}{162}\right)\) \(e\left(\frac{103}{324}\right)\) \(e\left(\frac{53}{324}\right)\) \(e\left(\frac{14}{27}\right)\) \(e\left(\frac{7}{108}\right)\) \(e\left(\frac{109}{162}\right)\) \(e\left(\frac{41}{162}\right)\) \(e\left(\frac{73}{324}\right)\) \(e\left(\frac{23}{81}\right)\)
\(\chi_{3888}(1069,\cdot)\) \(1\) \(1\) \(e\left(\frac{319}{324}\right)\) \(e\left(\frac{91}{162}\right)\) \(e\left(\frac{23}{324}\right)\) \(e\left(\frac{37}{324}\right)\) \(e\left(\frac{22}{27}\right)\) \(e\left(\frac{11}{108}\right)\) \(e\left(\frac{125}{162}\right)\) \(e\left(\frac{157}{162}\right)\) \(e\left(\frac{161}{324}\right)\) \(e\left(\frac{13}{81}\right)\)
\(\chi_{3888}(1093,\cdot)\) \(1\) \(1\) \(e\left(\frac{197}{324}\right)\) \(e\left(\frac{11}{162}\right)\) \(e\left(\frac{1}{324}\right)\) \(e\left(\frac{227}{324}\right)\) \(e\left(\frac{8}{27}\right)\) \(e\left(\frac{85}{108}\right)\) \(e\left(\frac{97}{162}\right)\) \(e\left(\frac{35}{162}\right)\) \(e\left(\frac{7}{324}\right)\) \(e\left(\frac{71}{81}\right)\)