Properties

Label 3895.1018
Modulus 38953895
Conductor 38953895
Order 120120
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(120))
 
M = H._module
 
chi = DirichletCharacter(H, M([90,80,57]))
 
pari: [g,chi] = znchar(Mod(1018,3895))
 

Basic properties

Modulus: 38953895
Conductor: 38953895
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 120120
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.fl

χ3895(258,)\chi_{3895}(258,\cdot) χ3895(463,)\chi_{3895}(463,\cdot) χ3895(1018,)\chi_{3895}(1018,\cdot) χ3895(1223,)\chi_{3895}(1223,\cdot) χ3895(1588,)\chi_{3895}(1588,\cdot) χ3895(1793,)\chi_{3895}(1793,\cdot) χ3895(1873,)\chi_{3895}(1873,\cdot) χ3895(1892,)\chi_{3895}(1892,\cdot) χ3895(1987,)\chi_{3895}(1987,\cdot) χ3895(2063,)\chi_{3895}(2063,\cdot) χ3895(2078,)\chi_{3895}(2078,\cdot) χ3895(2097,)\chi_{3895}(2097,\cdot) χ3895(2192,)\chi_{3895}(2192,\cdot) χ3895(2268,)\chi_{3895}(2268,\cdot) χ3895(2272,)\chi_{3895}(2272,\cdot) χ3895(2348,)\chi_{3895}(2348,\cdot) χ3895(2477,)\chi_{3895}(2477,\cdot) χ3895(2553,)\chi_{3895}(2553,\cdot) χ3895(2557,)\chi_{3895}(2557,\cdot) χ3895(2762,)\chi_{3895}(2762,\cdot) χ3895(2918,)\chi_{3895}(2918,\cdot) χ3895(2937,)\chi_{3895}(2937,\cdot) χ3895(3123,)\chi_{3895}(3123,\cdot) χ3895(3142,)\chi_{3895}(3142,\cdot) χ3895(3222,)\chi_{3895}(3222,\cdot) χ3895(3427,)\chi_{3895}(3427,\cdot) χ3895(3507,)\chi_{3895}(3507,\cdot) χ3895(3602,)\chi_{3895}(3602,\cdot) χ3895(3678,)\chi_{3895}(3678,\cdot) χ3895(3712,)\chi_{3895}(3712,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ120)\Q(\zeta_{120})
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

(3117,2871,1236)(3117,2871,1236)(i,e(23),e(1940))(-i,e\left(\frac{2}{3}\right),e\left(\frac{19}{40}\right))

First values

aa 1-11122334466778899111112121313
χ3895(1018,a) \chi_{ 3895 }(1018, a) 1111e(2330)e\left(\frac{23}{30}\right)e(124)e\left(\frac{1}{24}\right)e(815)e\left(\frac{8}{15}\right)e(97120)e\left(\frac{97}{120}\right)e(1140)e\left(\frac{11}{40}\right)e(310)e\left(\frac{3}{10}\right)e(112)e\left(\frac{1}{12}\right)e(1740)e\left(\frac{17}{40}\right)e(2340)e\left(\frac{23}{40}\right)e(37120)e\left(\frac{37}{120}\right)
sage: chi.jacobi_sum(n)
 
χ3895(1018,a)   \chi_{ 3895 }(1018,a) \; at   a=\;a = e.g. 2