from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3895, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([90,80,57]))
pari: [g,chi] = znchar(Mod(1018,3895))
χ3895(258,⋅)
χ3895(463,⋅)
χ3895(1018,⋅)
χ3895(1223,⋅)
χ3895(1588,⋅)
χ3895(1793,⋅)
χ3895(1873,⋅)
χ3895(1892,⋅)
χ3895(1987,⋅)
χ3895(2063,⋅)
χ3895(2078,⋅)
χ3895(2097,⋅)
χ3895(2192,⋅)
χ3895(2268,⋅)
χ3895(2272,⋅)
χ3895(2348,⋅)
χ3895(2477,⋅)
χ3895(2553,⋅)
χ3895(2557,⋅)
χ3895(2762,⋅)
χ3895(2918,⋅)
χ3895(2937,⋅)
χ3895(3123,⋅)
χ3895(3142,⋅)
χ3895(3222,⋅)
χ3895(3427,⋅)
χ3895(3507,⋅)
χ3895(3602,⋅)
χ3895(3678,⋅)
χ3895(3712,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3117,2871,1236) → (−i,e(32),e(4019))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ3895(1018,a) |
1 | 1 | e(3023) | e(241) | e(158) | e(12097) | e(4011) | e(103) | e(121) | e(4017) | e(4023) | e(12037) |