Properties

Label 3895.2762
Modulus 38953895
Conductor 38953895
Order 120120
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3895, base_ring=CyclotomicField(120)) M = H._module chi = DirichletCharacter(H, M([30,40,111]))
 
Copy content pari:[g,chi] = znchar(Mod(2762,3895))
 

Basic properties

Modulus: 38953895
Conductor: 38953895
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 120120
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 3895.fl

χ3895(258,)\chi_{3895}(258,\cdot) χ3895(463,)\chi_{3895}(463,\cdot) χ3895(1018,)\chi_{3895}(1018,\cdot) χ3895(1223,)\chi_{3895}(1223,\cdot) χ3895(1588,)\chi_{3895}(1588,\cdot) χ3895(1793,)\chi_{3895}(1793,\cdot) χ3895(1873,)\chi_{3895}(1873,\cdot) χ3895(1892,)\chi_{3895}(1892,\cdot) χ3895(1987,)\chi_{3895}(1987,\cdot) χ3895(2063,)\chi_{3895}(2063,\cdot) χ3895(2078,)\chi_{3895}(2078,\cdot) χ3895(2097,)\chi_{3895}(2097,\cdot) χ3895(2192,)\chi_{3895}(2192,\cdot) χ3895(2268,)\chi_{3895}(2268,\cdot) χ3895(2272,)\chi_{3895}(2272,\cdot) χ3895(2348,)\chi_{3895}(2348,\cdot) χ3895(2477,)\chi_{3895}(2477,\cdot) χ3895(2553,)\chi_{3895}(2553,\cdot) χ3895(2557,)\chi_{3895}(2557,\cdot) χ3895(2762,)\chi_{3895}(2762,\cdot) χ3895(2918,)\chi_{3895}(2918,\cdot) χ3895(2937,)\chi_{3895}(2937,\cdot) χ3895(3123,)\chi_{3895}(3123,\cdot) χ3895(3142,)\chi_{3895}(3142,\cdot) χ3895(3222,)\chi_{3895}(3222,\cdot) χ3895(3427,)\chi_{3895}(3427,\cdot) χ3895(3507,)\chi_{3895}(3507,\cdot) χ3895(3602,)\chi_{3895}(3602,\cdot) χ3895(3678,)\chi_{3895}(3678,\cdot) χ3895(3712,)\chi_{3895}(3712,\cdot) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ120)\Q(\zeta_{120})
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

(3117,2871,1236)(3117,2871,1236)(i,e(13),e(3740))(i,e\left(\frac{1}{3}\right),e\left(\frac{37}{40}\right))

First values

aa 1-11122334466778899111112121313
χ3895(2762,a) \chi_{ 3895 }(2762, a) 1111e(1930)e\left(\frac{19}{30}\right)e(2324)e\left(\frac{23}{24}\right)e(415)e\left(\frac{4}{15}\right)e(71120)e\left(\frac{71}{120}\right)e(1340)e\left(\frac{13}{40}\right)e(910)e\left(\frac{9}{10}\right)e(1112)e\left(\frac{11}{12}\right)e(3140)e\left(\frac{31}{40}\right)e(940)e\left(\frac{9}{40}\right)e(11120)e\left(\frac{11}{120}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ3895(2762,a)   \chi_{ 3895 }(2762,a) \; at   a=\;a = e.g. 2