sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3895, base_ring=CyclotomicField(120))
M = H._module
chi = DirichletCharacter(H, M([30,40,111]))
pari:[g,chi] = znchar(Mod(2762,3895))
Modulus: | 3895 | |
Conductor: | 3895 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 120 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3895(258,⋅)
χ3895(463,⋅)
χ3895(1018,⋅)
χ3895(1223,⋅)
χ3895(1588,⋅)
χ3895(1793,⋅)
χ3895(1873,⋅)
χ3895(1892,⋅)
χ3895(1987,⋅)
χ3895(2063,⋅)
χ3895(2078,⋅)
χ3895(2097,⋅)
χ3895(2192,⋅)
χ3895(2268,⋅)
χ3895(2272,⋅)
χ3895(2348,⋅)
χ3895(2477,⋅)
χ3895(2553,⋅)
χ3895(2557,⋅)
χ3895(2762,⋅)
χ3895(2918,⋅)
χ3895(2937,⋅)
χ3895(3123,⋅)
χ3895(3142,⋅)
χ3895(3222,⋅)
χ3895(3427,⋅)
χ3895(3507,⋅)
χ3895(3602,⋅)
χ3895(3678,⋅)
χ3895(3712,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3117,2871,1236) → (i,e(31),e(4037))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ3895(2762,a) |
1 | 1 | e(3019) | e(2423) | e(154) | e(12071) | e(4013) | e(109) | e(1211) | e(4031) | e(409) | e(12011) |
sage:chi.jacobi_sum(n)