Basic properties
Modulus: | \(3895\) | |
Conductor: | \(3895\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(120\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3895.fl
\(\chi_{3895}(258,\cdot)\) \(\chi_{3895}(463,\cdot)\) \(\chi_{3895}(1018,\cdot)\) \(\chi_{3895}(1223,\cdot)\) \(\chi_{3895}(1588,\cdot)\) \(\chi_{3895}(1793,\cdot)\) \(\chi_{3895}(1873,\cdot)\) \(\chi_{3895}(1892,\cdot)\) \(\chi_{3895}(1987,\cdot)\) \(\chi_{3895}(2063,\cdot)\) \(\chi_{3895}(2078,\cdot)\) \(\chi_{3895}(2097,\cdot)\) \(\chi_{3895}(2192,\cdot)\) \(\chi_{3895}(2268,\cdot)\) \(\chi_{3895}(2272,\cdot)\) \(\chi_{3895}(2348,\cdot)\) \(\chi_{3895}(2477,\cdot)\) \(\chi_{3895}(2553,\cdot)\) \(\chi_{3895}(2557,\cdot)\) \(\chi_{3895}(2762,\cdot)\) \(\chi_{3895}(2918,\cdot)\) \(\chi_{3895}(2937,\cdot)\) \(\chi_{3895}(3123,\cdot)\) \(\chi_{3895}(3142,\cdot)\) \(\chi_{3895}(3222,\cdot)\) \(\chi_{3895}(3427,\cdot)\) \(\chi_{3895}(3507,\cdot)\) \(\chi_{3895}(3602,\cdot)\) \(\chi_{3895}(3678,\cdot)\) \(\chi_{3895}(3712,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{120})$ |
Fixed field: | Number field defined by a degree 120 polynomial (not computed) |
Values on generators
\((3117,2871,1236)\) → \((i,e\left(\frac{1}{3}\right),e\left(\frac{37}{40}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\( \chi_{ 3895 }(2762, a) \) | \(1\) | \(1\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{71}{120}\right)\) | \(e\left(\frac{13}{40}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{31}{40}\right)\) | \(e\left(\frac{9}{40}\right)\) | \(e\left(\frac{11}{120}\right)\) |