Properties

Label 3895.2762
Modulus $3895$
Conductor $3895$
Order $120$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3895, base_ring=CyclotomicField(120))
 
M = H._module
 
chi = DirichletCharacter(H, M([30,40,111]))
 
pari: [g,chi] = znchar(Mod(2762,3895))
 

Basic properties

Modulus: \(3895\)
Conductor: \(3895\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(120\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3895.fl

\(\chi_{3895}(258,\cdot)\) \(\chi_{3895}(463,\cdot)\) \(\chi_{3895}(1018,\cdot)\) \(\chi_{3895}(1223,\cdot)\) \(\chi_{3895}(1588,\cdot)\) \(\chi_{3895}(1793,\cdot)\) \(\chi_{3895}(1873,\cdot)\) \(\chi_{3895}(1892,\cdot)\) \(\chi_{3895}(1987,\cdot)\) \(\chi_{3895}(2063,\cdot)\) \(\chi_{3895}(2078,\cdot)\) \(\chi_{3895}(2097,\cdot)\) \(\chi_{3895}(2192,\cdot)\) \(\chi_{3895}(2268,\cdot)\) \(\chi_{3895}(2272,\cdot)\) \(\chi_{3895}(2348,\cdot)\) \(\chi_{3895}(2477,\cdot)\) \(\chi_{3895}(2553,\cdot)\) \(\chi_{3895}(2557,\cdot)\) \(\chi_{3895}(2762,\cdot)\) \(\chi_{3895}(2918,\cdot)\) \(\chi_{3895}(2937,\cdot)\) \(\chi_{3895}(3123,\cdot)\) \(\chi_{3895}(3142,\cdot)\) \(\chi_{3895}(3222,\cdot)\) \(\chi_{3895}(3427,\cdot)\) \(\chi_{3895}(3507,\cdot)\) \(\chi_{3895}(3602,\cdot)\) \(\chi_{3895}(3678,\cdot)\) \(\chi_{3895}(3712,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{120})$
Fixed field: Number field defined by a degree 120 polynomial (not computed)

Values on generators

\((3117,2871,1236)\) → \((i,e\left(\frac{1}{3}\right),e\left(\frac{37}{40}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 3895 }(2762, a) \) \(1\)\(1\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{4}{15}\right)\)\(e\left(\frac{71}{120}\right)\)\(e\left(\frac{13}{40}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{11}{12}\right)\)\(e\left(\frac{31}{40}\right)\)\(e\left(\frac{9}{40}\right)\)\(e\left(\frac{11}{120}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3895 }(2762,a) \;\) at \(\;a = \) e.g. 2