Properties

Label 4002.701
Modulus $4002$
Conductor $2001$
Order $154$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(154))
 
M = H._module
 
chi = DirichletCharacter(H, M([77,63,121]))
 
pari: [g,chi] = znchar(Mod(701,4002))
 

Basic properties

Modulus: \(4002\)
Conductor: \(2001\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(154\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2001}(701,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4002.bp

\(\chi_{4002}(5,\cdot)\) \(\chi_{4002}(125,\cdot)\) \(\chi_{4002}(149,\cdot)\) \(\chi_{4002}(245,\cdot)\) \(\chi_{4002}(341,\cdot)\) \(\chi_{4002}(383,\cdot)\) \(\chi_{4002}(419,\cdot)\) \(\chi_{4002}(497,\cdot)\) \(\chi_{4002}(527,\cdot)\) \(\chi_{4002}(557,\cdot)\) \(\chi_{4002}(701,\cdot)\) \(\chi_{4002}(845,\cdot)\) \(\chi_{4002}(941,\cdot)\) \(\chi_{4002}(1019,\cdot)\) \(\chi_{4002}(1049,\cdot)\) \(\chi_{4002}(1079,\cdot)\) \(\chi_{4002}(1115,\cdot)\) \(\chi_{4002}(1169,\cdot)\) \(\chi_{4002}(1193,\cdot)\) \(\chi_{4002}(1211,\cdot)\) \(\chi_{4002}(1253,\cdot)\) \(\chi_{4002}(1367,\cdot)\) \(\chi_{4002}(1385,\cdot)\) \(\chi_{4002}(1397,\cdot)\) \(\chi_{4002}(1463,\cdot)\) \(\chi_{4002}(1571,\cdot)\) \(\chi_{4002}(1601,\cdot)\) \(\chi_{4002}(1745,\cdot)\) \(\chi_{4002}(1811,\cdot)\) \(\chi_{4002}(1907,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{77})$
Fixed field: Number field defined by a degree 154 polynomial (not computed)

Values on generators

\((2669,3133,553)\) → \((-1,e\left(\frac{9}{22}\right),e\left(\frac{11}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 4002 }(701, a) \) \(1\)\(1\)\(e\left(\frac{15}{77}\right)\)\(e\left(\frac{31}{154}\right)\)\(e\left(\frac{127}{154}\right)\)\(e\left(\frac{67}{77}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{16}{77}\right)\)\(e\left(\frac{30}{77}\right)\)\(e\left(\frac{37}{154}\right)\)\(e\left(\frac{61}{154}\right)\)\(e\left(\frac{73}{77}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4002 }(701,a) \;\) at \(\;a = \) e.g. 2