Properties

Label 4002.bp
Modulus $4002$
Conductor $2001$
Order $154$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(154))
 
M = H._module
 
chi = DirichletCharacter(H, M([77,7,121]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(5,4002))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4002\)
Conductor: \(2001\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(154\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2001.br
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{77})$
Fixed field: Number field defined by a degree 154 polynomial (not computed)

First 31 of 60 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(25\) \(31\) \(35\) \(37\)
\(\chi_{4002}(5,\cdot)\) \(1\) \(1\) \(e\left(\frac{64}{77}\right)\) \(e\left(\frac{45}{154}\right)\) \(e\left(\frac{85}{154}\right)\) \(e\left(\frac{60}{77}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{58}{77}\right)\) \(e\left(\frac{51}{77}\right)\) \(e\left(\frac{9}{154}\right)\) \(e\left(\frac{19}{154}\right)\) \(e\left(\frac{24}{77}\right)\)
\(\chi_{4002}(125,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{77}\right)\) \(e\left(\frac{135}{154}\right)\) \(e\left(\frac{101}{154}\right)\) \(e\left(\frac{26}{77}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{20}{77}\right)\) \(e\left(\frac{76}{77}\right)\) \(e\left(\frac{27}{154}\right)\) \(e\left(\frac{57}{154}\right)\) \(e\left(\frac{72}{77}\right)\)
\(\chi_{4002}(149,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{77}\right)\) \(e\left(\frac{97}{154}\right)\) \(e\left(\frac{149}{154}\right)\) \(e\left(\frac{1}{77}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{60}{77}\right)\) \(e\left(\frac{74}{77}\right)\) \(e\left(\frac{81}{154}\right)\) \(e\left(\frac{17}{154}\right)\) \(e\left(\frac{62}{77}\right)\)
\(\chi_{4002}(245,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{77}\right)\) \(e\left(\frac{61}{154}\right)\) \(e\left(\frac{81}{154}\right)\) \(e\left(\frac{30}{77}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{29}{77}\right)\) \(e\left(\frac{64}{77}\right)\) \(e\left(\frac{43}{154}\right)\) \(e\left(\frac{125}{154}\right)\) \(e\left(\frac{12}{77}\right)\)
\(\chi_{4002}(341,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{77}\right)\) \(e\left(\frac{15}{154}\right)\) \(e\left(\frac{131}{154}\right)\) \(e\left(\frac{20}{77}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{45}{77}\right)\) \(e\left(\frac{17}{77}\right)\) \(e\left(\frac{3}{154}\right)\) \(e\left(\frac{109}{154}\right)\) \(e\left(\frac{8}{77}\right)\)
\(\chi_{4002}(383,\cdot)\) \(1\) \(1\) \(e\left(\frac{76}{77}\right)\) \(e\left(\frac{39}{154}\right)\) \(e\left(\frac{125}{154}\right)\) \(e\left(\frac{52}{77}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{40}{77}\right)\) \(e\left(\frac{75}{77}\right)\) \(e\left(\frac{131}{154}\right)\) \(e\left(\frac{37}{154}\right)\) \(e\left(\frac{67}{77}\right)\)
\(\chi_{4002}(419,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{77}\right)\) \(e\left(\frac{89}{154}\right)\) \(e\left(\frac{151}{154}\right)\) \(e\left(\frac{16}{77}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{36}{77}\right)\) \(e\left(\frac{29}{77}\right)\) \(e\left(\frac{141}{154}\right)\) \(e\left(\frac{41}{154}\right)\) \(e\left(\frac{68}{77}\right)\)
\(\chi_{4002}(497,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{77}\right)\) \(e\left(\frac{153}{154}\right)\) \(e\left(\frac{135}{154}\right)\) \(e\left(\frac{50}{77}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{74}{77}\right)\) \(e\left(\frac{4}{77}\right)\) \(e\left(\frac{123}{154}\right)\) \(e\left(\frac{3}{154}\right)\) \(e\left(\frac{20}{77}\right)\)
\(\chi_{4002}(527,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{77}\right)\) \(e\left(\frac{101}{154}\right)\) \(e\left(\frac{71}{154}\right)\) \(e\left(\frac{32}{77}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{72}{77}\right)\) \(e\left(\frac{58}{77}\right)\) \(e\left(\frac{51}{154}\right)\) \(e\left(\frac{5}{154}\right)\) \(e\left(\frac{59}{77}\right)\)
\(\chi_{4002}(557,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{77}\right)\) \(e\left(\frac{67}{154}\right)\) \(e\left(\frac{41}{154}\right)\) \(e\left(\frac{38}{77}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{47}{77}\right)\) \(e\left(\frac{40}{77}\right)\) \(e\left(\frac{75}{154}\right)\) \(e\left(\frac{107}{154}\right)\) \(e\left(\frac{46}{77}\right)\)
\(\chi_{4002}(701,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{77}\right)\) \(e\left(\frac{31}{154}\right)\) \(e\left(\frac{127}{154}\right)\) \(e\left(\frac{67}{77}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{16}{77}\right)\) \(e\left(\frac{30}{77}\right)\) \(e\left(\frac{37}{154}\right)\) \(e\left(\frac{61}{154}\right)\) \(e\left(\frac{73}{77}\right)\)
\(\chi_{4002}(845,\cdot)\) \(1\) \(1\) \(e\left(\frac{30}{77}\right)\) \(e\left(\frac{139}{154}\right)\) \(e\left(\frac{23}{154}\right)\) \(e\left(\frac{57}{77}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{32}{77}\right)\) \(e\left(\frac{60}{77}\right)\) \(e\left(\frac{151}{154}\right)\) \(e\left(\frac{45}{154}\right)\) \(e\left(\frac{69}{77}\right)\)
\(\chi_{4002}(941,\cdot)\) \(1\) \(1\) \(e\left(\frac{18}{77}\right)\) \(e\left(\frac{145}{154}\right)\) \(e\left(\frac{137}{154}\right)\) \(e\left(\frac{65}{77}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{50}{77}\right)\) \(e\left(\frac{36}{77}\right)\) \(e\left(\frac{29}{154}\right)\) \(e\left(\frac{27}{154}\right)\) \(e\left(\frac{26}{77}\right)\)
\(\chi_{4002}(1019,\cdot)\) \(1\) \(1\) \(e\left(\frac{72}{77}\right)\) \(e\left(\frac{41}{154}\right)\) \(e\left(\frac{9}{154}\right)\) \(e\left(\frac{29}{77}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{46}{77}\right)\) \(e\left(\frac{67}{77}\right)\) \(e\left(\frac{39}{154}\right)\) \(e\left(\frac{31}{154}\right)\) \(e\left(\frac{27}{77}\right)\)
\(\chi_{4002}(1049,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{77}\right)\) \(e\left(\frac{87}{154}\right)\) \(e\left(\frac{113}{154}\right)\) \(e\left(\frac{39}{77}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{30}{77}\right)\) \(e\left(\frac{37}{77}\right)\) \(e\left(\frac{79}{154}\right)\) \(e\left(\frac{47}{154}\right)\) \(e\left(\frac{31}{77}\right)\)
\(\chi_{4002}(1079,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{77}\right)\) \(e\left(\frac{123}{154}\right)\) \(e\left(\frac{27}{154}\right)\) \(e\left(\frac{10}{77}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{61}{77}\right)\) \(e\left(\frac{47}{77}\right)\) \(e\left(\frac{117}{154}\right)\) \(e\left(\frac{93}{154}\right)\) \(e\left(\frac{4}{77}\right)\)
\(\chi_{4002}(1115,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{77}\right)\) \(e\left(\frac{75}{154}\right)\) \(e\left(\frac{39}{154}\right)\) \(e\left(\frac{23}{77}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{71}{77}\right)\) \(e\left(\frac{8}{77}\right)\) \(e\left(\frac{15}{154}\right)\) \(e\left(\frac{83}{154}\right)\) \(e\left(\frac{40}{77}\right)\)
\(\chi_{4002}(1169,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{77}\right)\) \(e\left(\frac{37}{154}\right)\) \(e\left(\frac{87}{154}\right)\) \(e\left(\frac{75}{77}\right)\) \(e\left(\frac{17}{22}\right)\) \(e\left(\frac{34}{77}\right)\) \(e\left(\frac{6}{77}\right)\) \(e\left(\frac{69}{154}\right)\) \(e\left(\frac{43}{154}\right)\) \(e\left(\frac{30}{77}\right)\)
\(\chi_{4002}(1193,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{77}\right)\) \(e\left(\frac{27}{154}\right)\) \(e\left(\frac{51}{154}\right)\) \(e\left(\frac{36}{77}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{4}{77}\right)\) \(e\left(\frac{46}{77}\right)\) \(e\left(\frac{67}{154}\right)\) \(e\left(\frac{73}{154}\right)\) \(e\left(\frac{76}{77}\right)\)
\(\chi_{4002}(1211,\cdot)\) \(1\) \(1\) \(e\left(\frac{54}{77}\right)\) \(e\left(\frac{127}{154}\right)\) \(e\left(\frac{103}{154}\right)\) \(e\left(\frac{41}{77}\right)\) \(e\left(\frac{9}{22}\right)\) \(e\left(\frac{73}{77}\right)\) \(e\left(\frac{31}{77}\right)\) \(e\left(\frac{87}{154}\right)\) \(e\left(\frac{81}{154}\right)\) \(e\left(\frac{1}{77}\right)\)
\(\chi_{4002}(1253,\cdot)\) \(1\) \(1\) \(e\left(\frac{48}{77}\right)\) \(e\left(\frac{53}{154}\right)\) \(e\left(\frac{83}{154}\right)\) \(e\left(\frac{45}{77}\right)\) \(e\left(\frac{19}{22}\right)\) \(e\left(\frac{5}{77}\right)\) \(e\left(\frac{19}{77}\right)\) \(e\left(\frac{103}{154}\right)\) \(e\left(\frac{149}{154}\right)\) \(e\left(\frac{18}{77}\right)\)
\(\chi_{4002}(1367,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{77}\right)\) \(e\left(\frac{69}{154}\right)\) \(e\left(\frac{79}{154}\right)\) \(e\left(\frac{15}{77}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{53}{77}\right)\) \(e\left(\frac{32}{77}\right)\) \(e\left(\frac{137}{154}\right)\) \(e\left(\frac{101}{154}\right)\) \(e\left(\frac{6}{77}\right)\)
\(\chi_{4002}(1385,\cdot)\) \(1\) \(1\) \(e\left(\frac{75}{77}\right)\) \(e\left(\frac{1}{154}\right)\) \(e\left(\frac{19}{154}\right)\) \(e\left(\frac{27}{77}\right)\) \(e\left(\frac{7}{22}\right)\) \(e\left(\frac{3}{77}\right)\) \(e\left(\frac{73}{77}\right)\) \(e\left(\frac{31}{154}\right)\) \(e\left(\frac{151}{154}\right)\) \(e\left(\frac{57}{77}\right)\)
\(\chi_{4002}(1397,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{77}\right)\) \(e\left(\frac{73}{154}\right)\) \(e\left(\frac{1}{154}\right)\) \(e\left(\frac{46}{77}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{65}{77}\right)\) \(e\left(\frac{16}{77}\right)\) \(e\left(\frac{107}{154}\right)\) \(e\left(\frac{89}{154}\right)\) \(e\left(\frac{3}{77}\right)\)
\(\chi_{4002}(1463,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{77}\right)\) \(e\left(\frac{131}{154}\right)\) \(e\left(\frac{25}{154}\right)\) \(e\left(\frac{72}{77}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{8}{77}\right)\) \(e\left(\frac{15}{77}\right)\) \(e\left(\frac{57}{154}\right)\) \(e\left(\frac{69}{154}\right)\) \(e\left(\frac{75}{77}\right)\)
\(\chi_{4002}(1571,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{77}\right)\) \(e\left(\frac{129}{154}\right)\) \(e\left(\frac{141}{154}\right)\) \(e\left(\frac{18}{77}\right)\) \(e\left(\frac{1}{22}\right)\) \(e\left(\frac{2}{77}\right)\) \(e\left(\frac{23}{77}\right)\) \(e\left(\frac{149}{154}\right)\) \(e\left(\frac{75}{154}\right)\) \(e\left(\frac{38}{77}\right)\)
\(\chi_{4002}(1601,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{77}\right)\) \(e\left(\frac{109}{154}\right)\) \(e\left(\frac{69}{154}\right)\) \(e\left(\frac{17}{77}\right)\) \(e\left(\frac{15}{22}\right)\) \(e\left(\frac{19}{77}\right)\) \(e\left(\frac{26}{77}\right)\) \(e\left(\frac{145}{154}\right)\) \(e\left(\frac{135}{154}\right)\) \(e\left(\frac{53}{77}\right)\)
\(\chi_{4002}(1745,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{77}\right)\) \(e\left(\frac{115}{154}\right)\) \(e\left(\frac{29}{154}\right)\) \(e\left(\frac{25}{77}\right)\) \(e\left(\frac{13}{22}\right)\) \(e\left(\frac{37}{77}\right)\) \(e\left(\frac{2}{77}\right)\) \(e\left(\frac{23}{154}\right)\) \(e\left(\frac{117}{154}\right)\) \(e\left(\frac{10}{77}\right)\)
\(\chi_{4002}(1811,\cdot)\) \(1\) \(1\) \(e\left(\frac{74}{77}\right)\) \(e\left(\frac{117}{154}\right)\) \(e\left(\frac{67}{154}\right)\) \(e\left(\frac{2}{77}\right)\) \(e\left(\frac{5}{22}\right)\) \(e\left(\frac{43}{77}\right)\) \(e\left(\frac{71}{77}\right)\) \(e\left(\frac{85}{154}\right)\) \(e\left(\frac{111}{154}\right)\) \(e\left(\frac{47}{77}\right)\)
\(\chi_{4002}(1907,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{77}\right)\) \(e\left(\frac{57}{154}\right)\) \(e\left(\frac{5}{154}\right)\) \(e\left(\frac{76}{77}\right)\) \(e\left(\frac{3}{22}\right)\) \(e\left(\frac{17}{77}\right)\) \(e\left(\frac{3}{77}\right)\) \(e\left(\frac{73}{154}\right)\) \(e\left(\frac{137}{154}\right)\) \(e\left(\frac{15}{77}\right)\)
\(\chi_{4002}(1919,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{77}\right)\) \(e\left(\frac{3}{154}\right)\) \(e\left(\frac{57}{154}\right)\) \(e\left(\frac{4}{77}\right)\) \(e\left(\frac{21}{22}\right)\) \(e\left(\frac{9}{77}\right)\) \(e\left(\frac{65}{77}\right)\) \(e\left(\frac{93}{154}\right)\) \(e\left(\frac{145}{154}\right)\) \(e\left(\frac{17}{77}\right)\)