from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4032, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,21,0,40]))
pari: [g,chi] = znchar(Mod(19,4032))
Basic properties
Modulus: | \(4032\) | |
Conductor: | \(448\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{448}(19,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4032.he
\(\chi_{4032}(19,\cdot)\) \(\chi_{4032}(451,\cdot)\) \(\chi_{4032}(523,\cdot)\) \(\chi_{4032}(955,\cdot)\) \(\chi_{4032}(1027,\cdot)\) \(\chi_{4032}(1459,\cdot)\) \(\chi_{4032}(1531,\cdot)\) \(\chi_{4032}(1963,\cdot)\) \(\chi_{4032}(2035,\cdot)\) \(\chi_{4032}(2467,\cdot)\) \(\chi_{4032}(2539,\cdot)\) \(\chi_{4032}(2971,\cdot)\) \(\chi_{4032}(3043,\cdot)\) \(\chi_{4032}(3475,\cdot)\) \(\chi_{4032}(3547,\cdot)\) \(\chi_{4032}(3979,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Values on generators
\((127,3781,1793,577)\) → \((-1,e\left(\frac{7}{16}\right),1,e\left(\frac{5}{6}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
\( \chi_{ 4032 }(19, a) \) | \(1\) | \(1\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{29}{48}\right)\) |
sage: chi.jacobi_sum(n)