from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4032, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,21,0,40]))
chi.galois_orbit()
[g,chi] = znchar(Mod(19,4032))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(4032\) | |
Conductor: | \(448\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(48\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 448.bm | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{48})\) |
Fixed field: | Number field defined by a degree 48 polynomial |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(37\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{4032}(19,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{29}{48}\right)\) |
\(\chi_{4032}(451,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{48}\right)\) |
\(\chi_{4032}(523,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{23}{48}\right)\) |
\(\chi_{4032}(955,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{43}{48}\right)\) |
\(\chi_{4032}(1027,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{17}{48}\right)\) |
\(\chi_{4032}(1459,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{37}{48}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{37}{48}\right)\) |
\(\chi_{4032}(1531,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{11}{48}\right)\) |
\(\chi_{4032}(1963,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{31}{48}\right)\) |
\(\chi_{4032}(2035,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{48}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{11}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{5}{48}\right)\) |
\(\chi_{4032}(2467,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{25}{48}\right)\) |
\(\chi_{4032}(2539,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{43}{48}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{47}{48}\right)\) |
\(\chi_{4032}(2971,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{47}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{19}{48}\right)\) |
\(\chi_{4032}(3043,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{23}{48}\right)\) | \(e\left(\frac{19}{24}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{41}{48}\right)\) |
\(\chi_{4032}(3475,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{48}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{1}{16}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{23}{24}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{13}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{13}{48}\right)\) |
\(\chi_{4032}(3547,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{15}{16}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{29}{48}\right)\) | \(e\left(\frac{1}{24}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{35}{48}\right)\) |
\(\chi_{4032}(3979,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{3}{16}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(e\left(\frac{5}{24}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{7}{16}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{7}{48}\right)\) |