Properties

Label 405.227
Modulus 405405
Conductor 405405
Order 108108
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([62,27]))
 
pari: [g,chi] = znchar(Mod(227,405))
 

Basic properties

Modulus: 405405
Conductor: 405405
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 108108
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 405.x

χ405(2,)\chi_{405}(2,\cdot) χ405(23,)\chi_{405}(23,\cdot) χ405(32,)\chi_{405}(32,\cdot) χ405(38,)\chi_{405}(38,\cdot) χ405(47,)\chi_{405}(47,\cdot) χ405(68,)\chi_{405}(68,\cdot) χ405(77,)\chi_{405}(77,\cdot) χ405(83,)\chi_{405}(83,\cdot) χ405(92,)\chi_{405}(92,\cdot) χ405(113,)\chi_{405}(113,\cdot) χ405(122,)\chi_{405}(122,\cdot) χ405(128,)\chi_{405}(128,\cdot) χ405(137,)\chi_{405}(137,\cdot) χ405(158,)\chi_{405}(158,\cdot) χ405(167,)\chi_{405}(167,\cdot) χ405(173,)\chi_{405}(173,\cdot) χ405(182,)\chi_{405}(182,\cdot) χ405(203,)\chi_{405}(203,\cdot) χ405(212,)\chi_{405}(212,\cdot) χ405(218,)\chi_{405}(218,\cdot) χ405(227,)\chi_{405}(227,\cdot) χ405(248,)\chi_{405}(248,\cdot) χ405(257,)\chi_{405}(257,\cdot) χ405(263,)\chi_{405}(263,\cdot) χ405(272,)\chi_{405}(272,\cdot) χ405(293,)\chi_{405}(293,\cdot) χ405(302,)\chi_{405}(302,\cdot) χ405(308,)\chi_{405}(308,\cdot) χ405(317,)\chi_{405}(317,\cdot) χ405(338,)\chi_{405}(338,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ108)\Q(\zeta_{108})
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

(326,82)(326,82)(e(3154),i)(e\left(\frac{31}{54}\right),i)

First values

aa 1-11122447788111113131414161617171919
χ405(227,a) \chi_{ 405 }(227, a) 1111e(89108)e\left(\frac{89}{108}\right)e(3554)e\left(\frac{35}{54}\right)e(47108)e\left(\frac{47}{108}\right)e(1736)e\left(\frac{17}{36}\right)e(2554)e\left(\frac{25}{54}\right)e(37108)e\left(\frac{37}{108}\right)e(727)e\left(\frac{7}{27}\right)e(827)e\left(\frac{8}{27}\right)e(736)e\left(\frac{7}{36}\right)e(118)e\left(\frac{1}{18}\right)
sage: chi.jacobi_sum(n)
 
χ405(227,a)   \chi_{ 405 }(227,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ405(227,))   \tau_{ a }( \chi_{ 405 }(227,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ405(227,),χ405(n,))   J(\chi_{ 405 }(227,·),\chi_{ 405 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ405(227,))  K(a,b,\chi_{ 405 }(227,·)) \; at   a,b=\; a,b = e.g. 1,2