from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(405, base_ring=CyclotomicField(108))
M = H._module
chi = DirichletCharacter(H, M([70,81]))
pari: [g,chi] = znchar(Mod(68,405))
χ405(2,⋅)
χ405(23,⋅)
χ405(32,⋅)
χ405(38,⋅)
χ405(47,⋅)
χ405(68,⋅)
χ405(77,⋅)
χ405(83,⋅)
χ405(92,⋅)
χ405(113,⋅)
χ405(122,⋅)
χ405(128,⋅)
χ405(137,⋅)
χ405(158,⋅)
χ405(167,⋅)
χ405(173,⋅)
χ405(182,⋅)
χ405(203,⋅)
χ405(212,⋅)
χ405(218,⋅)
χ405(227,⋅)
χ405(248,⋅)
χ405(257,⋅)
χ405(263,⋅)
χ405(272,⋅)
χ405(293,⋅)
χ405(302,⋅)
χ405(308,⋅)
χ405(317,⋅)
χ405(338,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(326,82) → (e(5435),−i)
a |
−1 | 1 | 2 | 4 | 7 | 8 | 11 | 13 | 14 | 16 | 17 | 19 |
χ405(68,a) |
1 | 1 | e(10843) | e(5443) | e(10813) | e(367) | e(5423) | e(10847) | e(2714) | e(2716) | e(365) | e(1811) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)