Properties

Label 4140.1091
Modulus $4140$
Conductor $828$
Order $66$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([33,11,0,9]))
 
pari: [g,chi] = znchar(Mod(1091,4140))
 

Basic properties

Modulus: \(4140\)
Conductor: \(828\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{828}(263,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.df

\(\chi_{4140}(11,\cdot)\) \(\chi_{4140}(191,\cdot)\) \(\chi_{4140}(911,\cdot)\) \(\chi_{4140}(1031,\cdot)\) \(\chi_{4140}(1091,\cdot)\) \(\chi_{4140}(1211,\cdot)\) \(\chi_{4140}(1391,\cdot)\) \(\chi_{4140}(1571,\cdot)\) \(\chi_{4140}(1631,\cdot)\) \(\chi_{4140}(1811,\cdot)\) \(\chi_{4140}(2291,\cdot)\) \(\chi_{4140}(2351,\cdot)\) \(\chi_{4140}(2471,\cdot)\) \(\chi_{4140}(2711,\cdot)\) \(\chi_{4140}(3011,\cdot)\) \(\chi_{4140}(3191,\cdot)\) \(\chi_{4140}(3731,\cdot)\) \(\chi_{4140}(3791,\cdot)\) \(\chi_{4140}(3971,\cdot)\) \(\chi_{4140}(4091,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((2071,461,1657,3961)\) → \((-1,e\left(\frac{1}{6}\right),1,e\left(\frac{3}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4140 }(1091, a) \) \(-1\)\(1\)\(e\left(\frac{25}{33}\right)\)\(e\left(\frac{59}{66}\right)\)\(e\left(\frac{8}{33}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{41}{66}\right)\)\(e\left(\frac{43}{66}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{31}{66}\right)\)\(e\left(\frac{28}{33}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4140 }(1091,a) \;\) at \(\;a = \) e.g. 2