from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4140, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,11,0,51]))
pari: [g,chi] = znchar(Mod(3971,4140))
Basic properties
Modulus: | \(4140\) | |
Conductor: | \(828\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(66\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{828}(659,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4140.df
\(\chi_{4140}(11,\cdot)\) \(\chi_{4140}(191,\cdot)\) \(\chi_{4140}(911,\cdot)\) \(\chi_{4140}(1031,\cdot)\) \(\chi_{4140}(1091,\cdot)\) \(\chi_{4140}(1211,\cdot)\) \(\chi_{4140}(1391,\cdot)\) \(\chi_{4140}(1571,\cdot)\) \(\chi_{4140}(1631,\cdot)\) \(\chi_{4140}(1811,\cdot)\) \(\chi_{4140}(2291,\cdot)\) \(\chi_{4140}(2351,\cdot)\) \(\chi_{4140}(2471,\cdot)\) \(\chi_{4140}(2711,\cdot)\) \(\chi_{4140}(3011,\cdot)\) \(\chi_{4140}(3191,\cdot)\) \(\chi_{4140}(3731,\cdot)\) \(\chi_{4140}(3791,\cdot)\) \(\chi_{4140}(3971,\cdot)\) \(\chi_{4140}(4091,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | Number field defined by a degree 66 polynomial |
Values on generators
\((2071,461,1657,3961)\) → \((-1,e\left(\frac{1}{6}\right),1,e\left(\frac{17}{22}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 4140 }(3971, a) \) | \(-1\) | \(1\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{41}{66}\right)\) | \(e\left(\frac{5}{33}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{5}{66}\right)\) | \(e\left(\frac{31}{66}\right)\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{7}{66}\right)\) | \(e\left(\frac{1}{33}\right)\) |
sage: chi.jacobi_sum(n)