from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4140, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([0,22,0,54]))
pari: [g,chi] = znchar(Mod(121,4140))
χ4140(121,⋅)
χ4140(301,⋅)
χ4140(601,⋅)
χ4140(841,⋅)
χ4140(961,⋅)
χ4140(1021,⋅)
χ4140(1501,⋅)
χ4140(1681,⋅)
χ4140(1741,⋅)
χ4140(1921,⋅)
χ4140(2101,⋅)
χ4140(2221,⋅)
χ4140(2281,⋅)
χ4140(2401,⋅)
χ4140(3121,⋅)
χ4140(3301,⋅)
χ4140(3361,⋅)
χ4140(3481,⋅)
χ4140(3661,⋅)
χ4140(3721,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2071,461,1657,3961) → (1,e(31),1,e(119))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 29 | 31 | 37 | 41 | 43 |
χ4140(121,a) |
1 | 1 | e(3329) | e(3323) | e(334) | e(118) | e(113) | e(332) | e(3319) | e(112) | e(3316) | e(3314) |