Properties

Label 4140.3301
Modulus $4140$
Conductor $207$
Order $33$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,44,0,60]))
 
pari: [g,chi] = znchar(Mod(3301,4140))
 

Basic properties

Modulus: \(4140\)
Conductor: \(207\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(33\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{207}(196,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.cm

\(\chi_{4140}(121,\cdot)\) \(\chi_{4140}(301,\cdot)\) \(\chi_{4140}(601,\cdot)\) \(\chi_{4140}(841,\cdot)\) \(\chi_{4140}(961,\cdot)\) \(\chi_{4140}(1021,\cdot)\) \(\chi_{4140}(1501,\cdot)\) \(\chi_{4140}(1681,\cdot)\) \(\chi_{4140}(1741,\cdot)\) \(\chi_{4140}(1921,\cdot)\) \(\chi_{4140}(2101,\cdot)\) \(\chi_{4140}(2221,\cdot)\) \(\chi_{4140}(2281,\cdot)\) \(\chi_{4140}(2401,\cdot)\) \(\chi_{4140}(3121,\cdot)\) \(\chi_{4140}(3301,\cdot)\) \(\chi_{4140}(3361,\cdot)\) \(\chi_{4140}(3481,\cdot)\) \(\chi_{4140}(3661,\cdot)\) \(\chi_{4140}(3721,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: 33.33.70011645999218458416472683122408534303895571350166174758601569.1

Values on generators

\((2071,461,1657,3961)\) → \((1,e\left(\frac{2}{3}\right),1,e\left(\frac{10}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4140 }(3301, a) \) \(1\)\(1\)\(e\left(\frac{31}{33}\right)\)\(e\left(\frac{28}{33}\right)\)\(e\left(\frac{2}{33}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{1}{33}\right)\)\(e\left(\frac{26}{33}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{8}{33}\right)\)\(e\left(\frac{7}{33}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4140 }(3301,a) \;\) at \(\;a = \) e.g. 2