Properties

Label 4140.2173
Modulus $4140$
Conductor $1035$
Order $132$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(132))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,44,99,54]))
 
pari: [g,chi] = znchar(Mod(2173,4140))
 

Basic properties

Modulus: \(4140\)
Conductor: \(1035\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(132\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1035}(103,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.dl

\(\chi_{4140}(97,\cdot)\) \(\chi_{4140}(157,\cdot)\) \(\chi_{4140}(313,\cdot)\) \(\chi_{4140}(337,\cdot)\) \(\chi_{4140}(373,\cdot)\) \(\chi_{4140}(457,\cdot)\) \(\chi_{4140}(493,\cdot)\) \(\chi_{4140}(517,\cdot)\) \(\chi_{4140}(697,\cdot)\) \(\chi_{4140}(733,\cdot)\) \(\chi_{4140}(1033,\cdot)\) \(\chi_{4140}(1213,\cdot)\) \(\chi_{4140}(1417,\cdot)\) \(\chi_{4140}(1537,\cdot)\) \(\chi_{4140}(1597,\cdot)\) \(\chi_{4140}(1717,\cdot)\) \(\chi_{4140}(1753,\cdot)\) \(\chi_{4140}(1813,\cdot)\) \(\chi_{4140}(1897,\cdot)\) \(\chi_{4140}(1993,\cdot)\) \(\chi_{4140}(2077,\cdot)\) \(\chi_{4140}(2113,\cdot)\) \(\chi_{4140}(2137,\cdot)\) \(\chi_{4140}(2173,\cdot)\) \(\chi_{4140}(2317,\cdot)\) \(\chi_{4140}(2353,\cdot)\) \(\chi_{4140}(2797,\cdot)\) \(\chi_{4140}(2857,\cdot)\) \(\chi_{4140}(2977,\cdot)\) \(\chi_{4140}(3073,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((2071,461,1657,3961)\) → \((1,e\left(\frac{1}{3}\right),-i,e\left(\frac{9}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4140 }(2173, a) \) \(1\)\(1\)\(e\left(\frac{113}{132}\right)\)\(e\left(\frac{1}{66}\right)\)\(e\left(\frac{85}{132}\right)\)\(e\left(\frac{27}{44}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{13}{66}\right)\)\(e\left(\frac{4}{33}\right)\)\(e\left(\frac{15}{44}\right)\)\(e\left(\frac{19}{33}\right)\)\(e\left(\frac{83}{132}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4140 }(2173,a) \;\) at \(\;a = \) e.g. 2