Properties

Label 4140.97
Modulus 41404140
Conductor 10351035
Order 132132
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(132))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,88,33,6]))
 
pari: [g,chi] = znchar(Mod(97,4140))
 

Basic properties

Modulus: 41404140
Conductor: 10351035
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 132132
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ1035(97,)\chi_{1035}(97,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.dl

χ4140(97,)\chi_{4140}(97,\cdot) χ4140(157,)\chi_{4140}(157,\cdot) χ4140(313,)\chi_{4140}(313,\cdot) χ4140(337,)\chi_{4140}(337,\cdot) χ4140(373,)\chi_{4140}(373,\cdot) χ4140(457,)\chi_{4140}(457,\cdot) χ4140(493,)\chi_{4140}(493,\cdot) χ4140(517,)\chi_{4140}(517,\cdot) χ4140(697,)\chi_{4140}(697,\cdot) χ4140(733,)\chi_{4140}(733,\cdot) χ4140(1033,)\chi_{4140}(1033,\cdot) χ4140(1213,)\chi_{4140}(1213,\cdot) χ4140(1417,)\chi_{4140}(1417,\cdot) χ4140(1537,)\chi_{4140}(1537,\cdot) χ4140(1597,)\chi_{4140}(1597,\cdot) χ4140(1717,)\chi_{4140}(1717,\cdot) χ4140(1753,)\chi_{4140}(1753,\cdot) χ4140(1813,)\chi_{4140}(1813,\cdot) χ4140(1897,)\chi_{4140}(1897,\cdot) χ4140(1993,)\chi_{4140}(1993,\cdot) χ4140(2077,)\chi_{4140}(2077,\cdot) χ4140(2113,)\chi_{4140}(2113,\cdot) χ4140(2137,)\chi_{4140}(2137,\cdot) χ4140(2173,)\chi_{4140}(2173,\cdot) χ4140(2317,)\chi_{4140}(2317,\cdot) χ4140(2353,)\chi_{4140}(2353,\cdot) χ4140(2797,)\chi_{4140}(2797,\cdot) χ4140(2857,)\chi_{4140}(2857,\cdot) χ4140(2977,)\chi_{4140}(2977,\cdot) χ4140(3073,)\chi_{4140}(3073,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ132)\Q(\zeta_{132})
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

(2071,461,1657,3961)(2071,461,1657,3961)(1,e(23),i,e(122))(1,e\left(\frac{2}{3}\right),i,e\left(\frac{1}{22}\right))

First values

aa 1-11177111113131717191929293131373741414343
χ4140(97,a) \chi_{ 4140 }(97, a) 1111e(103132)e\left(\frac{103}{132}\right)e(566)e\left(\frac{5}{66}\right)e(95132)e\left(\frac{95}{132}\right)e(2544)e\left(\frac{25}{44}\right)e(211)e\left(\frac{2}{11}\right)e(6566)e\left(\frac{65}{66}\right)e(2033)e\left(\frac{20}{33}\right)e(944)e\left(\frac{9}{44}\right)e(2933)e\left(\frac{29}{33}\right)e(85132)e\left(\frac{85}{132}\right)
sage: chi.jacobi_sum(n)
 
χ4140(97,a)   \chi_{ 4140 }(97,a) \; at   a=\;a = e.g. 2