from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4140, base_ring=CyclotomicField(132))
M = H._module
chi = DirichletCharacter(H, M([0,88,33,6]))
pari: [g,chi] = znchar(Mod(97,4140))
χ4140(97,⋅)
χ4140(157,⋅)
χ4140(313,⋅)
χ4140(337,⋅)
χ4140(373,⋅)
χ4140(457,⋅)
χ4140(493,⋅)
χ4140(517,⋅)
χ4140(697,⋅)
χ4140(733,⋅)
χ4140(1033,⋅)
χ4140(1213,⋅)
χ4140(1417,⋅)
χ4140(1537,⋅)
χ4140(1597,⋅)
χ4140(1717,⋅)
χ4140(1753,⋅)
χ4140(1813,⋅)
χ4140(1897,⋅)
χ4140(1993,⋅)
χ4140(2077,⋅)
χ4140(2113,⋅)
χ4140(2137,⋅)
χ4140(2173,⋅)
χ4140(2317,⋅)
χ4140(2353,⋅)
χ4140(2797,⋅)
χ4140(2857,⋅)
χ4140(2977,⋅)
χ4140(3073,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2071,461,1657,3961) → (1,e(32),i,e(221))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 29 | 31 | 37 | 41 | 43 |
χ4140(97,a) |
1 | 1 | e(132103) | e(665) | e(13295) | e(4425) | e(112) | e(6665) | e(3320) | e(449) | e(3329) | e(13285) |