Properties

Label 4140.761
Modulus $4140$
Conductor $207$
Order $66$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,55,0,6]))
 
pari: [g,chi] = znchar(Mod(761,4140))
 

Basic properties

Modulus: \(4140\)
Conductor: \(207\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{207}(140,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4140.dg

\(\chi_{4140}(41,\cdot)\) \(\chi_{4140}(101,\cdot)\) \(\chi_{4140}(581,\cdot)\) \(\chi_{4140}(761,\cdot)\) \(\chi_{4140}(821,\cdot)\) \(\chi_{4140}(1001,\cdot)\) \(\chi_{4140}(1181,\cdot)\) \(\chi_{4140}(1301,\cdot)\) \(\chi_{4140}(1361,\cdot)\) \(\chi_{4140}(1481,\cdot)\) \(\chi_{4140}(2201,\cdot)\) \(\chi_{4140}(2381,\cdot)\) \(\chi_{4140}(2441,\cdot)\) \(\chi_{4140}(2561,\cdot)\) \(\chi_{4140}(2741,\cdot)\) \(\chi_{4140}(2801,\cdot)\) \(\chi_{4140}(3341,\cdot)\) \(\chi_{4140}(3521,\cdot)\) \(\chi_{4140}(3821,\cdot)\) \(\chi_{4140}(4061,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((2071,461,1657,3961)\) → \((1,e\left(\frac{5}{6}\right),1,e\left(\frac{1}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 4140 }(761, a) \) \(-1\)\(1\)\(e\left(\frac{2}{33}\right)\)\(e\left(\frac{43}{66}\right)\)\(e\left(\frac{31}{33}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{31}{66}\right)\)\(e\left(\frac{7}{33}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{17}{66}\right)\)\(e\left(\frac{26}{33}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4140 }(761,a) \;\) at \(\;a = \) e.g. 2