from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4205, base_ring=CyclotomicField(116))
M = H._module
chi = DirichletCharacter(H, M([29,21]))
pari: [g,chi] = znchar(Mod(1027,4205))
χ4205(12,⋅)
χ4205(133,⋅)
χ4205(157,⋅)
χ4205(278,⋅)
χ4205(302,⋅)
χ4205(423,⋅)
χ4205(447,⋅)
χ4205(568,⋅)
χ4205(592,⋅)
χ4205(713,⋅)
χ4205(737,⋅)
χ4205(858,⋅)
χ4205(1003,⋅)
χ4205(1027,⋅)
χ4205(1148,⋅)
χ4205(1172,⋅)
χ4205(1293,⋅)
χ4205(1317,⋅)
χ4205(1438,⋅)
χ4205(1462,⋅)
χ4205(1583,⋅)
χ4205(1607,⋅)
χ4205(1728,⋅)
χ4205(1752,⋅)
χ4205(1873,⋅)
χ4205(1897,⋅)
χ4205(2018,⋅)
χ4205(2042,⋅)
χ4205(2163,⋅)
χ4205(2187,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(842,3366) → (i,e(11621))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ4205(1027,a) |
1 | 1 | e(5825) | e(2928) | e(2925) | e(5823) | e(11637) | e(5817) | e(2927) | e(11677) | e(2924) | e(11669) |