Properties

Label 4205.1462
Modulus 42054205
Conductor 42054205
Order 116116
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4205, base_ring=CyclotomicField(116))
 
M = H._module
 
chi = DirichletCharacter(H, M([29,113]))
 
pari: [g,chi] = znchar(Mod(1462,4205))
 

Basic properties

Modulus: 42054205
Conductor: 42054205
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 116116
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4205.bd

χ4205(12,)\chi_{4205}(12,\cdot) χ4205(133,)\chi_{4205}(133,\cdot) χ4205(157,)\chi_{4205}(157,\cdot) χ4205(278,)\chi_{4205}(278,\cdot) χ4205(302,)\chi_{4205}(302,\cdot) χ4205(423,)\chi_{4205}(423,\cdot) χ4205(447,)\chi_{4205}(447,\cdot) χ4205(568,)\chi_{4205}(568,\cdot) χ4205(592,)\chi_{4205}(592,\cdot) χ4205(713,)\chi_{4205}(713,\cdot) χ4205(737,)\chi_{4205}(737,\cdot) χ4205(858,)\chi_{4205}(858,\cdot) χ4205(1003,)\chi_{4205}(1003,\cdot) χ4205(1027,)\chi_{4205}(1027,\cdot) χ4205(1148,)\chi_{4205}(1148,\cdot) χ4205(1172,)\chi_{4205}(1172,\cdot) χ4205(1293,)\chi_{4205}(1293,\cdot) χ4205(1317,)\chi_{4205}(1317,\cdot) χ4205(1438,)\chi_{4205}(1438,\cdot) χ4205(1462,)\chi_{4205}(1462,\cdot) χ4205(1583,)\chi_{4205}(1583,\cdot) χ4205(1607,)\chi_{4205}(1607,\cdot) χ4205(1728,)\chi_{4205}(1728,\cdot) χ4205(1752,)\chi_{4205}(1752,\cdot) χ4205(1873,)\chi_{4205}(1873,\cdot) χ4205(1897,)\chi_{4205}(1897,\cdot) χ4205(2018,)\chi_{4205}(2018,\cdot) χ4205(2042,)\chi_{4205}(2042,\cdot) χ4205(2163,)\chi_{4205}(2163,\cdot) χ4205(2187,)\chi_{4205}(2187,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ116)\Q(\zeta_{116})
Fixed field: Number field defined by a degree 116 polynomial (not computed)

Values on generators

(842,3366)(842,3366)(i,e(113116))(i,e\left(\frac{113}{116}\right))

First values

aa 1-11122334466778899111112121313
χ4205(1462,a) \chi_{ 4205 }(1462, a) 1111e(1358)e\left(\frac{13}{58}\right)e(2529)e\left(\frac{25}{29}\right)e(1329)e\left(\frac{13}{29}\right)e(558)e\left(\frac{5}{58}\right)e(61116)e\left(\frac{61}{116}\right)e(3958)e\left(\frac{39}{58}\right)e(2129)e\left(\frac{21}{29}\right)e(105116)e\left(\frac{105}{116}\right)e(929)e\left(\frac{9}{29}\right)e(73116)e\left(\frac{73}{116}\right)
sage: chi.jacobi_sum(n)
 
χ4205(1462,a)   \chi_{ 4205 }(1462,a) \; at   a=\;a = e.g. 2